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Abstract 

The concept of grading the thermo-mechanical properties of materials provides an 

important tool to design new materials for certain specific functions. To take full 

advantage of this new tool research is needed not only for developing efficient pro- 

cessing methods and material characterization techniques but also for carrying out 

basic mechanics studies relating to the safety and durability of the FGM components. 

These studies may help to protect certain components against abrasion and wear at 

the surface where the maximum stress often occurs. 

Graded materials, also known as functionally graded materials (FGMs), are gen- 

erally two-phase composites with continuously varying volume fractions. Used as 

coatings and interfacial zones they can reduce thermally and mechanically induced 

stresses resulting from material property mismatch, increase the bonding strength 

and provide protection against adverse environments. 

In this study the contact problem for the FGM coatings is considered. The objec- 

tive of the study is to obtain a series of analytical benchmark solutions for examining 

the influence of such factors as material inhomogeneity constants, the coefficient of 

friction, curvatures and various length parameters on the critical stresses that may 

have a bearing on the fatigue and fracture of the components with FGM coatings. 

In the first part of this study an FGM layer bonded to a homogeneous substrate 

loaded by a rigid stamp is considered. It is assumed that the coating is inhomoge- 

neous, isotropic and linearly elastic, and the problem is one of plane strain. The shear 
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modulus of the FGM coating is represented by an exponential function. The Poisson's 

ratio is assumed to be constant. With the applications to load transfer components 

and abradable seals in mind, it is also assumed that the contacting surfaces are in 

relative motion with constant coefficient of friction. The related contact problem is 

solved for various different stamp profiles including flat, triangular, semicircular and 

cylindrical. 

In the second part of this study the contact problem for two elastic load transfer 

components with FGM coating have been solved. The load transfer components are 

typically gears, cams, bearings and machine tools, where two elastic solids of given 

curvatures move relative to each other. The curvatures may be positive or negative. 

In these components ceramic coatings may be used to increase the wear resistance, 

whereas the material property grading would improve the toughness, reduce the stress 

levels and again increase the bonding strength 

After solving the half space problem the Green's functions necessary for the so- 

lution of the problem in load transfer components are obtained. A parametric study 

has been done to find the effects of the parameters such as coefficient of friction, 

material property grading and surface shear modulus of elasticity of upper/lower or 

inner/outer cylinders. The contact stresses at the surface of the FGM coating are 

given and discussed. 



Chapter 1 

Introduction 

Many of the present and potential applications of functionally graded materials (FGMs) 

involve contact problems. These are the basic load transfer problems between two 

solids, generally in the presence of friction. In the near future FGMs are expected 

to be used in three groups of practical applications that will require studying the 

problem from a view point of contact mechanics. The first is tribological applications 

of FGM coatings in such load transfer components as bearings, gears and cams. In 

this case the contacting solids are both elastic and one or both may have an FGM 

coating. The second application of the concept would be in cylinder linings, brake 

discs and other automotive components for the purpose of improving the wear resis- 

tance. In the related contact problem one of the opposing components (e.g., piston 

rings and brake pads) may have sharp corners. The third area of potential application 

of FGM coatings involving contact mechanics is in the field of abradable seal design 

in stationary gas turbines. The concept of abradable seals was developed some years 

ago to reduce or to eliminate the gas leakage between the tips of the blades and the 

shroud. With such a design the gain due to increased efficiency seems to outweigh the 

power loss due to friction. In this case the layered medium consists of the substrate(a 

superalloy) the FGM (substrate/dense YSZ), and porous ceramic (porous YSZ). The 



contact is between porous ceramic and the blade. In these applications, the corre- 

sponding mechanics problem may be approximated by a quasi-static contact problem 

for a rigid punch of given profile moving over a graded medium in the presence of 

friction. 

1.1    Functionally Graded Materials(FGMs) 

In recent years the requirements of materials in severe environments have become 

more demanding. Ultimate purpose of the materials research in advancing technolo- 

gies such as power generation, transportation, aerospace and micro-electronics is the 

development of new materials that can withstand these environments. Material scien- 

tists considered two ways to overcome the shortcomings of the conventional materials. 

One is to develop a completely different homogeneous material and the other is to 

develop new compositions by using the existing materials. The second approach leads 

to the design of composites and intermetallics having homogeneous bulk properties. 

In recent past a wide variety of composites have been developed with fiber or 

filament reinforced, particulate or layered structure. A common feature of these com- 

posites is having different material characteristics on separate surfaces or in separate 

parts. An example of such a composite is a coated or joined material designed to 

improve material's surface characteristics to prevent failure caused by corrosion, wear 

and fatigue. Coated materials have a wide range of applications such as the blades 

in gas turbine engines which are subjected to high stresses and highly corrosive at- 

mosphere, combustion chambers, machine tools, gears, bearings, cams and abradable 

seals. 

The disadvantage of these piecewise homogeneous materials is that they consist 

of bonded dissimilar components which lead to discontinuities in the material's me- 

chanical, physical, and chemical properties along the interfaces. The consequences of 



this are higher residual, thermal and mechanical stresses, weaker bonding strength, 

low toughness and tendency toward cracking and spallation. 

An alternative concept which may also be used to overcome some of the shortcom- 

ings of layered dissimilar materials would be the introduction of interfacial regions 

or coatings with graded thermomechanical properties.[l]-[6]. The approach is to syn- 

thesize inhomogeneous composites, in which the material's mechanical, physical, and 

chemical properties change continuously by varying the volume fractions of the con- 

stituents between zero to hundred percent. These materials are called Functionally 

Graded Materials (FGM). Apart from increasing the bond strength[7] and reduc- 

ing the thermal stresses, grading also seems to improve the fracture toughness and 

fatigue and corrosion crack growth resistance parameters of thermal barrier coat- 

ings. For example, in joining tungsten to zirconia by introducing layers that contain 

80/20,60/40,40/60 and 20/80 percent W/Zr02, it was shown that the peak value 

of the residual stress becomes approximately one-sixth of that obtained from direct 

W-Zr02 bonding[l]. 

The objective of the early research on the FGMs was to develop a new class of 

metal/ceramic composites with graded volume fractions to achieve the required high 

temperature resistance, toughness, strength and heat conductivity. An up to date 

summary and description of the recent research on the subject may be found in the 

proceedings of the international symposia on FGMs [4],[8],[9], [5]. 

Even though initially the FGM research was largely motivated by the practical 

application of the concept in thermal shielding problems in gas turbine and engine 

components, combustion chambers and high speed air and space transport, materials 

with graded physical properties have almost unlimited potential in many technological 

applications. However, in the near future the applications of FGMs will most likely be 

limited to thermal barrier coatings, corrosion-resistant coatings and wear-resistance 



coatings. 

1.2    Wear-Resistant Coatings/Abradable Seals 

Surface treatments and coatings are being used more and more frequently to solve 

various critical tribological problems. They offer several significant benefits when ap- 

plied to metals. Increased corrosion resistance, reduced sliding wear, and increased 

rolling contact fatigue life are some of the major benefits. Examples of the above in- 

clude electrodeposited thin steel films(such as 52100, M50 and M50 NiL) for increased 

corrosion resistance [10], and hard ceramic coatings ( such as TiN and TiC [11]), solid 

lubricant coatings( such as Cu[12]) and diamond-like carbon(DLC) [13] for increased 

wear and fatigue [14] resistance. 

In most homogeneous coatings, the main failure mechanism is the delamination 

and subsequent spallation at the coating-substrate interface. The spallation would 

expose the bare metal surfaces to adverse environment and mechanical contact and 

would accelerate the corrosion and wear process. These failures can be controlled by 

controlling the material properties near and at the surface. In such applications it is 

necessary to provide the bulk material with a protective coating of a more resistant 

material such as monolithic structural ceramics and fiber reinforced ceramics including 

carbon-carbon composites. 

Ceramic materials are used in many industrial applications. Cutting tools,for ex- 

ample, are a common application where the material is subjected to high thermal 

and abrasive environment and high stresses. Ceramics are also being used to pro- 

vide the necessary hardness or wear resistance to surfaces of structural components 

transmitting forces through contact, such as gears, bearings and cams. 

Ceramics based on oxides such as AI2O3 are well known and used in continuous 

turning of cast iron and steel.   By adding TiC, it is possible to improve thermal 
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stability. Ceramics based on silicon nitride(Si3N4) are used for milling and cutting 

operations of cast iron with higher rate of cut. Problems can occur because of the 

diffusion of silicon into iron at high temperatures. This effect can be reduced by a 

coating of the Si3N4- ceramics with A1203. 

Generally, ceramic materials have high hardness, relatively low density and de- 

pending on the kind of ceramic, low thermal conductivity. The thermal expansion in 

the case of Si3N4 and A1203 is very low and cause the development of thermal stresses 

in films obtained by physical vapor deposition(PVD). 

One of the main disadvantages of these ceramics is their brittle nature. Intuitively 

it is clear that the fatigue life of these components may be improved quite considerably 

if one uses a graded rather than a homogeneous ceramic coating on the metallic 

substrate. In load transfer components FGM coatings would provide the necessary 

surface hardness without sacrificing the overall toughness. 

In the past wear and corrosion-resistant coatings have been used quite extensively 

in industrial machinery. The coating material has been metals such as stainless steels, 

Mo-based alloys and WC-Co as well as ceramics such as A1203, Ti02 and Cr203. For 

example, WC-Co and Cr3C2/NiCr have been extensively used in aircraft industry 

to coat various turbine/compressor components and mid-span stiffeners for improved 

wear resistance. Other applications of wear-resistant coatings have been in printing 

rolls, steel mills, petrochemical industry, and automobile industry. Most of these 

coatings have been deposited by using a thermal spray process. Since thermal spray 

technique is readily suitable for grading the composition of the coating, service life 

improvements can be obtained in all applications of wear resistant coatings by using 

the FGM concept. 



1.3 Contact problems in Graded Materials 

The contact problems involving graded materials may be considered in two major 

categories, namely the abradable seals and load transfer components. Abradable seals 

are used in some stationary gas turbines to reduce or eliminate the leakage between 

turbine blades and the shroud. The seal is a very low density ceramic deposited 

over the shroud metal structure through a graded interfacial region[15]. Because of 

the large difference between the stiffness of the blade and low density ceramic, the 

blade may be modelled as a rigid stamp pressed against and moving relative to an 

elastic medium. In this particular application the reason for grading the medium 

is to reduce the magnitude of the stresses and to improve the bonding strength. A 

related potential application of this particular concept is the wear control in aluminum 

alloy cylinders used in internal combustion engines. Here the piston rings are pressed 

against the cylinder and wear control is accomplished by coating the cylinder. 

Load transfer components are typically gears, cams, bearings and machine tools, 

where two elastic solids of given curvatures move relative to each other. The curva- 

tures may be positive or negative. In these components ceramic coatings may be used 

to increase the wear resistance, whereas the material property grading would improve 

the toughness, reduce the stress levels and again increase the bonding strength. 

1.4 Literature review on Contact Mechanics 

Contact problems have been a topic of interest within the theory of elasticity for over 

100 years. The problem of determining the stress distribution in a semi infinite elastic 

solid under the compressive action of a rigid body was first considered by Boussinesq. 

Hence problems of this kind are referred to as Boussinesq problems. The general 

description of the problem may be found in the classical paper by Hertz [16] who 
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gave birth to an area of research which has grown into the present day field of contact 

mechanics. 

The foundation of contact mechanics analysis rests on the Hertz assumption. If 

the contact area is small compared to the geometry of the contacting bodies and if it 

is far removed from other surfaces, then the contacting bodies can be approximated 

as semi-infinite planes or spaces. This generally reduces the complexity of the original 

problem and simplifies the solution process, allowing closed form solutions in many 

cases. This Hertz assumption has provided a great stimulus for analyzing contact 

problems for half planes and half spaces. 

Harding and Sneddon [17] obtained the general solution of the Boussinesq problem 

for an axisymmetric punch. Using the Boussinesq solution for point loading on half 

space, the contact problem may be formulated as a Fredholm integral equation of 

the first kind. Remarkable progress was made by Shtaerman(see book by Galin[18]), 

who showed that polynomial solutions multiplied by a square root term could be 

achieved for the related integral equation if the contact region on a half space is 

elliptic. Later, Shtaerman's result was developed to handle the contact problem 

for an inhomogeneous isotropic medium by Rostovtsev[19] ,[20] and a homogeneous 

anisotropic medium by Willis[21], [22]. 

Either the Integral transformation approach or the finite element method can be 

used for computing stresses. In terms of actual implementation for practical design 

the finite element model can be effectively used for arbitrary complex geometry, but 

the integral formulation is limited to simplified contact configurations. On the other 

hand the finite element models require some effort in the pre and post processing of 

the data and overall setup of the problem, while the use of the numerical integral 

model is very straightforward. Depending on the complexity of the application both 



models may have a notable practical significance. For material selection and prelim- 

inary design the Integral transform approach may be very efficient. For final design 

development in critical and complex applications the finite element approach may 

provide acceptable design solutions with a minimum number of model assumptions 

and limitations. Analytical solutions to contact problems have technologically signifi- 

cant applications in the aircraft, automotive and marine industries. For instance, the 

knowledge of contact pressure distribution allows the calculation of internal stresses in 

order to determine those regions where potential damage may occur as a consequence 

of the application of concentrated loads. 

Even though such solutions can be obtained numerically by using finite-difference 

or finite element approaches, the analytical approach presented here allows one to 

generate these solutions efficiently thereby facilitating parametric studies wherein the 

geometric parameters are varied to ascertain their effect on the resulting contact 

pressure. The present solution when employed in conjunction with the current punch 

testing methods for the determination of the in situ elastic moduli of constituent 

materials in a layered composite. 

Solutions to many plane as well as axisymmetric problems can be found in the 

work of Galin. A general solution of such problems using integral transforms was 

given by Sneddon [23]. 

The general method of solving frictionless plane contact problems was given by 

Muskhelishvili[24]. Much of the literature in this area deals with an elastic slab, either 

loaded symmetrically from both surfaces or loaded from one surface and rigidly fixed 

on the other surface. A survey of these two types of elasticity problems, tackled by 

the method of integral transforms, may be found in the book by Uflyand [25]. 

In subsequent studies a layer between the punch and the subspace was introduced. 

A systematic treatment of this kind of problems can be found in [27]-[29]. Recently, 
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Kasmalkar solved the axisymmetric contact problem for a layer bonded to substrate 

for different indenter geometries [30]. 

Ratwani and Erdogan [31] have considered the plane contact problem for an elastic 

layer lying frictionlessly on an elastic half space. Civelek and Erdogan[32] have solved 

the problem in axisymmetric case. 

Frictional phenomena have to be considered when the tangential part of the mo- 

tion is important in the response of two or more bodies coming into contact during 

static or dynamic load transfer. Most of the formulation relies on the law of Coulomb. 

However, in some cases local micro-mechanical phenomena within the contact inter- 

face has to be taken into account. An extensive overview may be found in [33]. For 

the physical background of the frictional phenomena reader is referred to [34]. 

For frictional contact problems of linear elasticity, most of the solutions given are 

approximate solutions , obtained by using either finite element method or a more 

specific variational formulation. The finite element method has been used by many 

investigators to study contact problems. Chan and Tuba [35], Tsuta and Yamaji [36] 

and Ohte [37] studied contact problems for plane and axisymmetric problems. In 

these studies, an ideal type of Coulomb friction has been included. Lindeman [38] 

has used the finite element method to study shrink fit problems. 

Although considerable research is being carried out in components involving FGMs, 

there is not much work done in the area of contact mechanics. However, in recent 

years fracture mechanics of FGMs have been extensively studied by Erdogan and 

coworkers. 

Contact problems of a rigid punch on a non-homogeneous medium were solved 

approximately for small values of the non-homogeneity parameter, by Bakirtas [39]. 

Bakirtas, considered the frictionless elastostatic problem of a rigid punch on an elastic 

half place [40]. Guler[41] solved the same problem for the stiffening medium including 
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friction. 

1.5    Statement of the Problem 

1.5.1     Introduction 

The main cause of failure in mechanical structures is fracture and fatigue. Crack 

initiation and propagation take place essentially in areas of high stresses or in areas 

where friction and wear are present. In contact zones in a variety of load transmission 

components quasi-static loads can lead to friction and to high stresses which results in 

erosion and fatigue. It is thus necessary to predict the magnitude of contact stresses, 

in order to design these elements 

The contact problems can be categorized into two broad sections,namely fric- 

tionless and with friction.In the first, the friction between the contacting solids are 

neglected which simplifies the problem significantly. For contact problems that arise 

in well-lubricated components, this assumption is well justified. In the second group, 

forces of friction are not small. Therefore, the effect of friction can not be neglected. 

Here two cases can arise. In the fist case, one elastic solid moves relative to the other 

and the movement is so slow that the dynamic effect can be neglected. This is the 

case in the proposed study. In the second case no displacement of the punch as a 

whole with respect to the elastic body takes place. However, when axy < r}oyy a rigid 

linkage (stick), and when axy > r}ayy a relative displacement (slip) would take place 

between the contacting solids. 

In this study, dynamic effects are neglected and it is assumed that forces of friction 

obey Coulomb's law which states that 

Vxy — V^yy 

where rj is the coefficient of friction. 
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1.5.2    Description of the problem 

In this study two classes of problems will be considered namely; contact problems for 

rigid stamps (e.g. abradable seals) and contact problems in load transfer components. 

The contact problems to be studied for abradable seals are described in Fig. 1.1. 

Here the blade will be represented by a rigid stamp and the abradable seal by a 

(ceramic-rich) graded metal/low density ceramic layer. In the analytical solution to 

be carried out the metal substrate will be modeled as an elastic half plane. It will 

be assumed that the stamp and the coated medium are in relative motion and the 

coefficient of friction rj along the contact region is constant (i.e., Q = r]P). Four basic 

stamp geometries shown in Fig. 1.1 will be considered. Also the stamp problems shown 

in Fig. 1.1c and Fig. 1.Id will be studied separately for both positive and negative 

directions of the tangential force Q. The main calculated results in these problems 

are the contact stresses which may then be used with appropriate kernels to evaluate 

the desired stresses and displacements. 

In the load-transfer components shown in Fig. 1.2, it will be assumed that the 

contacting solids locally have shallow curvatures (that is, the contact zone size (b + a) 

is "small" compared to Rx and R2. Thus, in formulating the problem one may 

make the standard Hertzian assumption to the effect that the Green's functions for 

the concentrated surface tractions in a cylindrical medium may be approximated 

by that of a half plane. The contacting solids consist of dissimilar homogeneous 

materials coated by graded elastic layers of known thickness.. Locally the solids will be 

represented by circular cylinders with positive/negative (Fig.l.2a) or positive/positive 

(Fig. 1.2b) curvatures. The problem will be considered with or without friction. The 

main calculated quantities will again be the contact stresses and the load versus the 

contact zone size curves. 

In these problems it will be assumed that a coating layer of thickness h2 or h3 
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is perfectly bonded to the homogeneous substrate. The coating is nonhomogeneous 

where the nonhomogeneity is assumed to be in the thickness direction only and may be 

approximated by ß$(y) = ^30e
732/, /J,30 being the shear modulus of the FGM coating 

on the surface at y = 0. The Poisson's ratio is assumed to be constant for both 

materials. 

The result of this study may be applicable to a great variety of structural compo- 

nents such as connecting-rods, bolted connections, shrink fits, rolling mills, turbine 

blade roots, ball and roller bearings, foundations, pavements in roads and runways, 

and other structures consisting of layered media. 
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Figure 1.1: Contact problems for abradable seals 
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Figure 1.2: Contact problems for load transfer components 
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Chapter 2 

Formulation of the Upper Half 

Plane 

2.1    Solution of Differential Equations 

In this chapter the Greens functions for the upper half plane will be developed. The 

standard elasticity analysis of the upper half plane composed of a homogeneous sub- 

strate and an FGM coating will be carried out under the mixed boundary conditions 

along the surface. By using an exponential variation for the shear modulus of the 

FGM coating and applying Fourier transforms, the Navier's equations will be re- 

duced to a sistem of ordinary differential equations. These differential equations will 

be solved by applying continuity of the stress and displacement conditions along the 

interface and the mixed boundary conditions along the surface. Finally the Greens 

functions for the displacement gradients in x directions will be found by taking the 

inverse transforms. 

Consider the plane elasticity punch problem shown in Figure 2.1. The medium(1) 

is a homogeneous substrate and medium (2) is the FGM coating with a thickness 
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Figure 2.1: Geometry of the problem for the upper half plane 

of h2. The elastic constants of the homogeneous substrate is represented by n\ and 

«i. The non-homogeneity of the FGM coating is assumed to be such that its shear 

modulus, ßi is approximated by 

ßi{y) = ßi^\       0<y<h2. (2.1) 

Thus 

72 fl2 
Mio = y"2oe 

where the non-homogeneity parameter is 

72 h2   =   lnr2, 

r ßw 
i 2     —      • 

^20 

(2.2) 

(2.3) 

(2.4) 

We define another parameter, \i 

ßw 
X2 =   

ßl 

For the plane contact problem under consideration, we start by writing the equations 

of elastisity 

aij,j = o, (2.5) 

Sij 
1 (         \ 

~      n \Ui,J "r" Uj,i) ) (2.6) 

&ij =     2fiSij + AEkkbij. 
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Hooke's law for the medium (1) and (2) can be written as 

<rixx{x,y)   = 

°lyy{x,y)    = 

Pi 

«1 - 

Pi 

1 

«1 - 1 

(-1 + l)^ + (3--i)-¥ 

^xy(aj,y)    =   Ml 
dui      dvi 
—- H i 

<9y      9a; 

(2.8) 

h2<y <oo     (2.9) 

(2.10) 

02xx(x,y) 

<>2yy(x,y)     = 

P2oe my 

K2 - 1 
.722/ M2oe 

^2-1 

<72xy(x,y)     =     P20ey2V 

(3-.2)—+ («2 + l)^ 

du2     dv2 

(2.11) 

0 < y < h2    (2.12) 

(2.13) 
dy      dx 

where K2 = 3 - 4^2 for plane strain and K2 = (3 - f2)/(l + u2) for the generalized 

plane stress conditions. In the absence of body forces, the equations of equilibrium 

can be written as 

da lxx 

dx 
+ da Ixy      _ 

dy 
=   0, 

daiXy     da 

dx 
+ ^   =   0, 

dy 
da2xx + da^   = 

dx dy 
da2xy     da2yy    _   Q 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
dx     '     dy 

Substituting stresses found from equations (2.8)-(2.13) into the equations of equilib 

rium (2.14)-(2.17), we obtain the Navier's equations as follows 

d2ui     n d
2vi ß2Ui 

dx2 

d2vi 

(/c1 + l)^ + («1-l)V^ + 2^L   =   0, 
dy2        dxdy 

N- -i     /        ^d2vi     n d
2ui o, 

(2.18) 

(2.19) 
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{K2+1)lf+{K2-1)^+2dx^y- 

+72(3 -«2)^ + 72(^2 + 1)^   =   0, (2.20) 

+72(«2-l)^ +72(^2-1)^   =   0. (2.21) 

To solve the Navier's equations we define the Fourier transforms of the four displace- 

ment components, Ui(x,y), u2{x,y), vi(x,y) and v2(x,y), as 

/oo 

Ul(x,y)e-iaxdx, (2.22) 
•00 

/oo 

u2(x,y)e-iaxdx, (2.23) 
■00 

/oo 

^(^e^ote, (2.24) 
•00 

/oo 

Ü2(rr,y)e-ia^o;. (2.25) 
00 

The functions ui(x,y), u2(x,y) and vi(x,y), v2(x,y) are given by the following 

inverse transforms; 

1   r°° 
«i(*,y)   =   ^y     Ffay^da, (2.26) 

1    r00 

u2(:r,y)   =   — /     F2(a,y)e^da, (2.27) 
27T J-oo 
1   r00 

t>i(*,3/)   =   ^j     G,{a,yy«xda, (2.28) 

1    f00 

v2(x,y)   =   — y     G2(aJ?/)e^da. (2.29) 

Substituting (2.26)-(2.29) into (2.18)-(2.21) yields the following system of differential 

equations with constant coefficients. 

j2p j/"< 

(«1-l)^-(«1 + l)a2F1 + 2«a^i   =   0, (2.30) 
dy2 dy 

(Kl + l)^fl-(Kl-l)a2G1 + 2ia^   =   0, (2.31) 
dy2 dy 
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(K2 - 1« + 72(^2 - l)^P ~ («2 + 1)«2F2 

+2ia^ + ia72(«2-l)G2   =   0, (2.32) 
ay 

{K2 + \)-^f + 72(^2 + 1)-^ - («2 - l)a2G2 

+2ia— \-ia^2(3 — K2)F2   =   0. (2.33) 
ay 

The solution of equations (2.30) and (2.31) can be expressed as 

Fl(a,y)   =   [A11(a)+A12(a)y}e^y + [Al3(a) + Au(a)y}e-^,       (2.34) 

dfay)   =   [A21(a) + A22(a)y}e^ + [A23(a) + Au(a)y}e-^y.       (2.35) 

For (2.32) and (2.33), if we assume a solution of the form 

F2(a,y)   =   A3(a)eny, (2.36) 

G2(a,y)   =   MW, (2.37) 

we obtain 

4 

F2(a,y)   =   $>3»e^, (2.38) 

4 

G2(a,y)   =   J2A*A*)eniy' (2-39) 
i=\ 

where n.,-,     (j = 1,... , 4) satisfies the following characteristic equation 

{n) -a2 + 72n,-)2 + 52
2|a|2|72|

2 = 0, (2.40) 

with 

n2 + 72%   =   |a|2 + i|a|52|72|,        j = l,2 (2.41) 

n2j ~ 72rij   =   \a\   - i \a\ 52 |72|,        j = 3,4 (2.42) 

3 - K2 

K2 + 1 
52   =   Lj^. (2.43) 
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The roots of the characteristic equation are given by 

nx   = - (-72 + ^l + 4(a2 + i\a\\l2\52)J , 

= 2 (-72- Y/72+4(a2 + «lall72^2)j , 

= 2 ( -72 + ^72 +4(a2- i|a||72|<J2) J , 

n4   = - f-72--\/722 + 4(a2- «Hb^)) • 

n2 

"3 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

The functions Aij(a), A2j(a), A3j(a) and Ay (a), (j — 1... 4) are unknown functions 

and are not independent. The relationship between them can be found by substituting 

(2.34), (2.35) into (2.30), (2.31) and (2.38), (2.39) into (2.32), (2.33) 

An (a) =   i 
Icel  .    .  . j-Li42i(a) + -A22{a) 

a ; (2.48) 

Au(a) •H    A         (      \ 
=   »—A22(a), 

a 
(2.49) 

A13(a) =   i 
Kl    A         1      \ + — A24(a ? (2.50) 

Au(a) ■Wl    A         1      \ =   -%—-424(a), 
a 

(2.51) 

AZj{a)   = aj(a)A4j(a), .7 = 1,2 (2.52) 

A3j(a)   = ~ai-2 ( a)^-(a), J = 3,4 (2.53) 

where 

(K2 + 1) K2 + j2nj] - (K2 - 1) a2 

a,-(a) = r-7^ TT; ^  n za [2rij-+ 72 (3 - K2)] 

Using equations (2.41) and (2.42), (2.54) it may be seen that 

12za2- |a|(K2 + l)<$272 
aj(a)   = 

a     2nj+ 72(3-K2) 

1 2zo!2 + \a\(K2 + 1)^272 
a     2nj + 72(3 - K2) 

J = l,2 

aj(a) = -OJ_2(Q!),        J = 3,4. 

(2.54) 

(2.55) 

(2.56) 

(2.57) 
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2.2    Boundary and Continuity Conditions 

2.2.1     Continuity conditions along the interface 

The first four conditions are the displacement and stress continuity conditions along 

the interface at y = h2 which can be written as, 

Ui(x,h2) 

vi(x,h2) 

alyy(x,h2) 

aixy(x,h2) 

u2(x,h2), 

v2{x,h2), 

a2yy(x, h2), 

a2xy(x,h2). 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

Since both oiyy and aixy vanish as \x2 + y2\ —v oo, in the solution given by (2.34) and 

(2.35), An and A12 must be set to zero. Thus (2.34) and (2.35) reduce to 

F^y)   =   [Al3(a) + Au(<*)y]e-My, 

dfay)   =   [A23(a) + A24(a)y}e-^y. 

Using (2.58) and (2.59) we obtain 

A* 

.|a| 
a 

— («i - \a\h2) 
a f   ^3   1   _ Ol a2 -ai -a2 

< 
A* 

1 h2 I   ^4   J 1 1 1 1 A* 
^43 

A* ^44 

(2.62) 

(2.63) 

>,     (2-64) 
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where 

A* = A23e^
h2, 

A* ^24 = A24e
|a|/i2, 

A* = A41e
nih2, 

A* = Ai2en2h2, 

A* = Aue™2, 

A 44 A^e n2h2 

Solving for A2Z and A\± from (2.64), we have 

A 

A* 
^23 

A* 24 

1 — h2bi   1 — h2b2   1 — h2bi   1 — h2b2 

h b2 bx b2 

Ml 

^■42 

A* ■^■43 

144 

where 

7             ct       . a 
01   = 1—a,i, 

K2 K2 

M    •a 
b2   — %—a2. 

K2 K2 

> , 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

(2.73) 

By using the third and fourth boundary conditions (i.e. (2.60) and (2.61)) we obtain 

(2.74) 
Si       Si A* 

^41 

M3 

-s2   -s2 A* 
^42 

A 44 
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where 

si — i\2aa\ + A2 (K2 + l)niKi + [K\ — l) \a\ 

s2 = i\2aa2 + A2 («2 + 1) «2^1 + («? - l) M 

*i = «i [X2«i«i + M(«i + 1)] + iot [«1X2 - («1 - 1)] 

*2 = 02[X2«irc2+|a|(Kl + l)]+«*[«lX2-(«l-l)] 

A2 = K? + K1(A2(3-Ä2)-2) + l 

A2 

X2 

«1 — 1 
X2 7 

K2 — 1 
Mio 

^1 

Solving for A^ and A43 , we obtain 

A 41 

A 43 

»"1   r3 

r3   FT 

ji 42 

Ä 44 

where 

^3 

1     /     -       _     \ 
— (s2ti + Sit2) , 

— (s2ti - Sit2) , 
^2 

(2.75) 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

A, 
S1      Si 

ti  -h 
= -(sih + Siti). (2.85) 

2.2.2    Boundary conditions 

The other two boundary conditions come from the tractions along the surface. Sub- 

stituting u2 and v2 into (2.12), we have 

dG2 «2-1       ,     ,      1    ro° {3-K2)(ia)F2 + {K2 + l)- 
dy 

eiaxda. (2.86) 
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Taking the inverse transform of (2.86), we obtain 

Defining the contact stresses on the surface as 

/oo 

<T2yy(t,y)i 
■oo 

e~iatdt 

a2xy(x,0)   =   T(X), 

Fourier transforms of the tractions on the surface becomes 

/■oo 

P(a) = I    a{t)e~iatdt, 

e-iatdt. 
/oo 

r(t)t 
•oo 

Therefore taking the limit of equation (2.87) as y —> 0 we have 

(3 - K2)(za)F2(a,y) + (K2 + l)^(al2/) = J^P^' 

Substituting u2 and v2 into (2.13) we find 

i  r 
V2xy{x,y) = /^20e722/—   / 

dF2 

dy 
(a,y) + (ia)G2(ot,y) eiaxda. 

1 
-Q{a). 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

Taking the inverse transform of (2.93) we have 

dF2 
-z— (a, y) + (ia)G2(a, y) — 
dyK      '    v   ;    v      '     ß20e^y 

By substituting F2(a,y) and G2(a,y) into equations (2.92) and (2.94) we obtain 

(2.94) 

2ll     ^12       Zu Z\2 

Z"L\     z22     —Z2\     —Z22 

An 

< 
Ai2 

> 

-443 

Au 
K             J 

_1_ 

A*20 

(K2-l)P(a) 

Q{a) 
(2.95) 
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Also, substituting An and Ai3 into (2.95) we have 

where 

r2    r2 

r4   -n 

j_ I   (K2-l)P(a) 

^ \        Q{a) 

^4 z22 + ^me-^"2) - ^Trse-'12^1-"2), 

(2.96) 

(2.97) 

(2.98) 

■zn = (3-K2)(«a)ai + («2 + 1)^1, 

zi2 = (3 - K2)(ia)a2 + (K2 + 1)^2, 

Z21 = ßi^i + i&, 

z22 — a2n2 + id. 

Therefore, solving for Ai2 and A44 we have 

1 
A42   = 

Au   = 

.    [(K2-l)P{a)ü + TZQ(a)], 
^20^3 

1     hO(a) - («2 - l)P(a)r4], 
A*2oA 

where 

A, = 
r2     r2 

r4   -n 
= -(r2r4 + r2r-4). 

(2.99) 

(2.100) 

(2.101) 

(2.102) 

(2.103) 

(2.104) 

(2.105) 

2.3    The surface displacement gradients 

So far, we have found all the constants A-j, (i = 1,..., 4, j = 1,..., 4) to determine 

u2(x,y) and v2(x,y) in the Fourier domain in (2.34),(2.35), (2.38) and (2.39). Since 

displacement vector is specified on the part of the boundary y = 0 and the traction 

vector is specified on the remainder, our problem is a mixed boundary value problem. 
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Input to the problem is the y component of the displacement gradient at the surface, 

—v2(x, 0) and the unknowns are the contact stresses cr2xy(x, 0) and cr2yy{x, 0). 
ox 

Thus the displacement gradients can be found by writing the derivatives of (2.29) 

and (2.27) with respect to x giving 

\im^-v2{x,y)   =   lim—/     iaG2(a,y)eiaxda, (2.106) 

ß 1    f00 

lim-^-u2(x,y)   =   lim-W     iaF2(a,y)eiaxda. (2.107) 

Substituting (2.36) and (2.37) into (2.106)and (2.107) we obtain 

d f°° 
hm27ifj,20-T-v2(x,y)   =     /     Kn(x,y,t)a2yy(t,0)dt 
y^° ox J_0O 

/oo 

K12(x,y,t)a2xy{t,0)dt, (2.108) 
■oo 

d f°° 
\im2TriJ,2o-5-u2(x1y)   —     /     K21(x,y,t)a2xy(t,0)dt 
y-*° ox J_00 

/oo 

K22(x,y,t)a2yy(t,0)dt, (2.109) 
■oo 

where 

/oo 

hu(a,y)e-ic*^da, (2.110) 
•oo 

/oo 

h2l(a,y)e-ia^da, (2.111) 
■oo 

/oo 

Mo^e-^-^da, (2-112) 
■oo 

/oo 

/i22(a,2/)e-iQ(t-l)da, (2.113) 
■oo 
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hn(a,y)   =   -ia{Kl    1} (y.ü + Wd, (2-H4) 

hi2(oi,y)  =  -T-(-yi^2 + ^2), (2.115) 
^3 

h2i(a,y)   =   —T-(2/2^2 + j£r2), (2.116) 
^3 

h22(a,y)   =   _i^^ (y2rl-y2~n), (2.117) 
As 

yi (a, y)   =   e^ + r1e-
/l2^-"2)+ni3/ + r3e-,l2(ni-7l2)+riiy, (2.118) 

y2(a,J/)   =   a2e
n2y + alrle-

h^ni-n2)+my -älrse-^^-71^^.       (2.119) 

The singularities in the kernels come from the asymptotic behavior of the integrands. 

The asymptotic analysis has to be performed in order to extract the singularities as 

a ->• 00. The details of asymptotic expansion of the kernels Kn(x,y,t), Ki2(x,y,t), 

K2i(x,y,t) and K22(x,y,t) are given in Appendix E. For a -> 00 the asymptotic 

behavior of hn(a,y), hx2{a,y), h2i{a,y) and h22(a,y) are as follows: 

M«,,)   =   ^e-H»(^+<i±-lg + 0(i)),       (,120) 

M«,y)   =   eH*(_^l+(-±il^+0 (_!)), (2.121) 

M«„) = J£je-N.(_^i+(^^ + 0(y),     (,122, 

Mo,s)   =   eH*(^_(-±I^+0(-l)). (,123) 

We may now write Ku, K2i, Ki2, K22 as 

Kn(x,y,t)   =    [+™ (hu(a,y) + i^^^-e-Wy)e-ia^da + KnJ?.l24) 
J -00   V ^     1^1 / 

K12(x,y,t) = J+CO (hMa,y) + ^^e-^y-ia{t-x)da + K12oo, (2.125) 

K2l(x,y,t) = [+°° (h2l(a,y) + z^^^e-^Ae-i^-^da + K21Jß^) 

K22(x,y,t)   =   j+(X> (^h22(a,y)-^^e--^yy-^t-^da + K22oo,     (2.127) 
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where 

Knoo(x,y,t)   =   -^t±   f°° t^-e'^e-^-^da, (2.128) 
^ J— oo     l"H 

ifi2oo(a:,y,t)   =   -^^   I™ e-W«e-ia^da, (2.129) 
^ J—oo 

K21oo(x,y,t)   =   -^±1   r i^Le-^e-^-^da, (2.130) 
4      7-0O   M 

^22oo(^,y,i)   =   +^^   r e-We-^^da. (2.131) 
^ ./—OO 

The first integrals in (2.124)- (2.127) are bounded and, when substituted into (2.108) 

and (2.109) limit can be put under the integral sign. Using the following relations 

[+0° iMe-\«\ye-i°(t-*)da   =      2{t-x) y>0 (2.132) 
loo     a {t-xf + y2' -oo 

f+OO 

J —c 

e-\a\ye-ia(t-x)da    =      2V ? y>Q (2.133) 
(t-x)  +y2 

it may easily be shown that 

Knoo(x,y,t)   =   -K2^1
f.   *~*     2, (2-134) 

2     (i — a;)-* + jr 

W*,V,*>   =   -"2
2"X(t_x; + ^. P-135) 

W*,»,*)   =   -^(^^. P-136) 

«•220.(1,»,«)   =   +^-^ %—-5. (2.137) 
2     (£ — a;)2 + 2/^ 

By taking the limit as y —> 0 in equations (2.134)-(2.137) and noting that 

lim -. %: , = ir6(t-x), (2.138) 
y-+o (t - x)2 + y2 K        ' v        ' 

we obtain 

KmKlloo(x,y,t) = -*2*1, 1    , (2.139) 
y->o 2     t — x 

lim Kl2oo(x,y,t) = -^^7vS{t-x), (2.140) 

\imK21oo(x,y,t) = -/\+1    1    , (2.141) 
z/-»o 2     i — rr 

lim ii:22oo (a;, y,i) - +^-7r£(i - z). (2.142) 
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Therefore equations (2.108) and (2.109) becomes 

27rß20—-v2(x,y)   =      /     [Ku(x,y, t) - KUoo(x, y,t)}a2yy(t, y)dt 

/oo 

[K12{x, y, t) - K12oo(x, y, t)] a2xy{t, y)dt 
•oo 
/oo 

Kiioo{x,y.t)a2yy{t,y)dt 
■oo 
/oo 

K12oo{x,y,t)a2xy(t,y)dt: (2.143) 
■oo 

2TT/j,20—u2(x,y)   =      /     [K21(x,y,t)~ K2ioo{x,y,t)]a2xy(t,y)dt 

/CO 

[K22(x,y,t) - K22oo(x,y,t)]a2yy{t,y)dt 
-oo 
/oo 

K2ioo(x,y,t)a2xy{t,y)dt 
■oo 
/oo 

K22oo(x,y,t)a2yy(t,y)dt. (2.144) 
-oo 

2 
Multiplying (2.143) and (2.144) by — —- and taking the limit as y ->■ 0. 

7T (K2 + 1) 

4//20   3     ,    nx 2 2       r00 

u2(x,0)   =   -7 —- /     a2yy{t,0)In(t,x)dt 
7r(K2 + l) 7-00 K2 + 1 dx 

^^(^O)/^^,^)^ 
7T(«2 + 1) J-c 

--T ^^dt - ^a2xy(x, 0),       (2.145) 
■K }_^      t-X K2 + l 

 ^-^-u2(x,0)   =   — —- /     a2xy{t,0)l2i{t,x)dt 
K2 + ldx IT{K2 + 1) J_00 

aj,j,(i,0)/22(*,^)^ 
7T(«2 + 1) ,/_c 

1    [°° CT2xy{t,0)dt        «2-1 . 
^L^^ + ^^M)'     (2-146) 
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where 

Iu(t,x) = J~ (huM + i^^je-^-^da, (2.147) 

Iu(t,x) = f™ (huia^ + ^y-^-^da, (2.148) 

hi&x) = £~ (h21(a,0) + i^^je-^^da, (2.149) 

/22(*,z) = f_°° (h22(a,0) -^iy-^-^da. (2.150) 

Further refinements can be made by analyzing the kernels hi{t,x),I2±(t,x),Ii2(t,x) 

and I22(t,x) in equation (2.145) and (2.146). Observing that 

in   =   2 /    » [i$n (a) e-iQ(t-x)] da = 2 /    $n (a) sin a(t - x)da, (2.151) 
Jo Jo 

/»OO /-oo 

Ji2   =   2 /    3? [$12 (a) e-i«(*-*)] da = 2 /      $12 (a) cos a(i - x)da, (2.152) 
Jo Jo 

/>oo /*oo 

J21   =   2 /    3? [i$2i (a) e-*^-*5] da = 2 /    $21 (a) sin a(£ - z)da, (2.153) 
Jo Jo 

/•OO /"OO 

J22   =   2 /    3? [$22 (a) e-*(t-*)] da = 2 /    $22 (a) cosa(i - x)da, (2.154) 
Jo Jo 

where 

$ll(a)   =   -^Zll(yirl + yrr4) + ^, (2.155) 

012(a)   =   7T (-2/1^ + ^2) + ^-^, «  (2.156) 

$21 (a)   =   -T-(^2^2 + y27'2) + —-:—, (2.157) 
A3 4 

Za(K2 - l)   ,     _       _     s          «2-1 icy -, ro\ 022(a)   = —r -{Wi-yiTi) —, (2.158) 
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we can write (2.145) and (2.146) as; 

where 

1   fc 

-UJ2a2xy(x,0) / 
n J-< 

1 fc 

UJ2a2yy{x,0) / 
"   J — < 

t — X 
1      />oo 

+ kn{t,x) a2yy{t,0)dt 

— /     a2xy(t,0)k12(t,x)dt   =   f2(x),     (2.159) 

1 
t — X 

1 /"OO 

+ k21(t,; <72xy{t,0)dt 

1        /-OO 

— /     a2yy(t:Q)k22(t,x)dt   =   g2{x),     (2.160) 

ÜÜ2 

I2(X) 

92{x) 

A2 

kn(t,x) 

kn(t,x) 

k21(t,x) 

k22{t,x) 

K2 - 1 

K2 + 1' 

A2^-^(a:,0), 

.    d     ,    n. 
Mg-U2{x,0), 

«2 + 1' 
4 roc 

K2 

/>oo 

- /    §ii(a) sina(t — x)da, 
1 Jo 

$12(a)cosa;(i — x)da, 
«2 + 1 Jo 

4       /-00 /•oo 

- /    $2i(a)sma(t — x)da, 
1 Jo «2 + 1 Jo 

4        z-00 

K2 + l 
$22(ö)cosa(t — x)da. 

(2.161) 

(2.162) 

(2.163) 

(2.164) 

(2.165) 

(2.166) 

(2.167) 

(2.168) 
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Chapter 3 

Formulation of the lower half plane 

3.1    Solution of Differential Equations 

Consider the plane elasticity problem shown in Figure 3.1. The medium (4) is a 

homogeneous substrate and medium (3) is the FGM coating with a thickness fr3. The 

elastic constants of the homogeneous substrate is represented by yu4 and «4. The 

non-homogeneity of the FGM coating is assumed to be such that its shear modulus, 

yu3 is approximated by 

M = ßzoe™,        -h3<y<0. (3.1) 

Thus 

(3.2) 

(3.3) 

(3.4) 

M40 — M306           ! 

where the non-homogeneity parameter is 

73^3     = -inr3, 

r3 = ^40 

A*30* 

We define another parameter, X3 

X3 = 
^40 
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y 
G' 

1^30 

V 

T=T|G —*- 

FGM layer    © 
X 

1^40 
M4 

® 

Figure 3.1: Geometry of the problem for the lower half plane 

For the plane contact problem under consideration the Hooke's law can be written as 

°3yy{x,y)     = 

A*3oe 732/ 

«3-1 
732/ 

(«3 + 1)-^" + (3 ~«3 

M3oe 

/C3 - 1 

&3xy(x,y)     =     ^30e732/ 

9y J ' 

(S-^ + fe + l)- 

dy       dx 

(3.5) 

, - hz < y < 0      (3.6) 

(3.7) 

(?4xx{x,y)     - 

04yy{x,y)     = 

A*4 

Av4 — 1 

( ,   1^4    ,   /o ^ (K4 + l)ä^ + (3-K4)^j' 

«4 — 1 

0$xy{x,y)     =    ^4 

(3-K4)_ + («4 + l)_ 

9MA     dv& 
+ 

(3.8) 

, - oo < y < -/i3     (3.9) 

(3.10) 
9y       <9:r 

where K3 = 3 - 4u3 for plane strain and K3 = (3 - i/3)/(l + z/3) for the generalized 

plane stress conditions. The governing equations are the equilibrium equations and 
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in the absence of body forces, they can be written as 

da4xx     da. + ^4x,      =     Q (311) 

dx dy 
da4xy        da4yy + ^M     =    0j (312) 

dx dy 
9(JZxx   ,   dazxy + ^   =   o, (3.13) 

ox dy 
d°zx1 + dazy]L   =   0 (314) 

dx dy 

Substituting stresses found from equations (3.8)-(3.7) into equations of equilibrium 

(3.11)-(3.14), we obtain the Navier's equations as follows 

+73(3-^)^ + 73^3 + 1)^   =   0, (3.15) 

+73(^3-1)^ + 73(^3-1)^   =   0, (3.16) 

.        „, d2u4     .        ,. d2u4     n d
2v4 ,01M 

(K4 + l)_ + (,c4-l)_ + 2^   =   0, (3.17) 

/ , N 92V4       . .,. 92v4      „ d
2U4 ro io\ (^ + 1)^ + ^-1)^ + 2^   =   0. (3.18) 

To solve the Navier's equations we define the Fourier transforms of the four displace- 

ment components, u3(x,y), v3(x,y), u4(x,y), and v4(x,y) as 

/oo 

u3(x,y)e-™dx, (3.19) 
■00 

/oo 

u4(x:y)e-ia*dx, (3.20) 
■00 

/oo 

«3(0;, yje-^ds, (3.21) 
■00 

/oo 

U4(x,y)e-^^. (3.22) 
■00 
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The functions u5(x, y), u4(x, y) and vz(x, y), v4(x, y) are given by the following inverse 

transforms; 

1   r°° 
u3(x,y)   =   —J     F3(a,y)eiaxda, (3.23) 

1   r°° 
M^y)   =   7T /     F4(a,y)e^da, (3.24) 

2?r J-00 
1    f°° 

vz(x,y)   =   — /     G3(a,y)e*axda, (3.25) 
^ J-00 

1   r°° 
Mx,y)   =   — /    G4(a,y)e*axda. (3.26) 

27T J-oo 

Substituting (3.23)-(3.26) into (3.17)-(3.16) yields the following system of differential 

equations with constant coefficients: 

{K3 " 1}^ + 73("3 " X)^ ~ {KS + l)a2Fz 

+2ia^ + ial3(K3 - 1)G3   =   0, (3.27) 
dy 

{KZ + 1)^ + 73("3 + l)lt " ("3 ~ 1)a2C?3 

+2^-^ + 1073(3-«3)^3   =   0, (3.28) 
"2/ 

(K4-l)^-(K4 + l)a2F4 + 2ia^P   =   0, (3.29) 
«y dy 

(K4 + l)^-(«4-l)a2G4 + 2za^   =   0. (3.30) 
dy2 dy 

We can express the solution of (3.29) and (3.30) as 

F4(a,y)   =   [A75(a) + A76(a)y]e^ + [A77(a) + A78(a)y]e-^,       (3.31) 

G4(a,y)   =   [Ass^+Ase^^e^ + ^srH + ^s^^e-l^.       (3.32) 

Assuming a solution of the form 

F3(a,y)   =   A5(a)en^ (3.33) 

G3(a,y)   =   Ae(a)en\ (3.34) 
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we obtain the solution of (3.27) and (3.28) as 

F3(a,y)   =   ;£>5»e^, 
3=5 

G3(a,y)   =   Y,A*MVjyi 
3=5 

where n^, (j = 5,... ,8) satisfies the following characteristic equation 

2   ,   jr2| |2i   ,  i2 (nj - a' + l3njY + c^H^r = 0, 

with 

K3 + 1 

The roots of the characteristic equation are found to be 

n5   =   - I-73 + ^/732 + 4(a2 + z|a||73|53)j 

n6 -7s 

(3.35) 

(3.36) 

(3.37) 

ni+73^j   =    M  -hi j0;j <53 j-y31, j = 5,6 (3.38) 

Uj-^rij   =   \af -i\oi\63\i31, J-7,8 (3.39) 

52   -   3~K3. 
3                1 1 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

/72 + 4(a2 + z|o!||73|53) 

n7   =   - ( -73 + ^jj + 4(a2- i|a||73|53) 

n8   =   - f-73-y73+4(a2-^Iall73|^3) 

The functions A5j(a), A§j{a), A7j(a) and As^a) (j = 5 ... 8) are unknown functions 

and are not independent. The relationship between them can be written as 

(3.45) A75 {a) ■■ 

A76{a) : 

A77(a)   =   i 

^U85 (a) + — A86(a) 
a a 

■\a\    A        (     \ %—A8e(a) 
a 

L^A87{a) + —A88{a) 
a a 

\a\ 
A78(a)   =   -i—A88(a), 

a 

(3.46) 

(3.47) 

(3.48) 
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A5j(a)   =   aj(a)A6j(a),        j = 5,6 (3.49) 

A5j(a)   =   -ä^cOAe»,        j = 7,8 (3.50) 

where 

(«3 + 1) [n2 + 73%] - («3 - 1) a2 . 
aj(a) = ■   ro      , k \i '        J=5,...,8. (3.51) 

%a [2nj + 73 (3 - K3)\ 

Using equations (3.38) and (3.39), (3.51) becomes 

12ia2 - \a\{K3 + l)53js . .      . 
aj(a)   = —-—jz r—,        .7 = 5,6 (3.52) 

a     2nj + 73(3-K3) 

aj(a) = —ö—;—70 ^—'     ^ = 7'8 I3-5,3) a     2nj+73(3-«3) 

aj{a) = -äj-2(a),       j = 7,8 (3.54) 

3.2    Boundary and Continuity Conditions 

3.2.1     Continuity conditions along the interface 

The unknowns Aij, (i = 5,..., 8, j = 5,..., 8) are obtained from the following dis- 

placement and stress continuity conditions along the interface: 

u3(x,-h3) = u4(x,-h3), (3.55) 

v3(x,-h3) = v4(x,-h3), (3.56) 

&3yy{x,-h3) — a4yy(x,-h3), (3.57) 

a3xy(x,-h) = a4xy(x,-h3). (3.58) 

Since both a4yy and a4xy vanish as \x2 + y2\ —> —oo, in the solution given by (3.31) 

and (3.32), A77 , A78, A87 and A8s must be set to zero. Thus (3.31) and (3.32) reduce 

to 

F4(a,y)   =   [A75{a)+A76{a)y]eM», (3.59) 

G4(a,y)   =   [A85(a) + A86(a)y}e^. (3.60) 

39 



Using (3.55) and (3.56) we obtain 

i—   —{K4 — I o; j n,3 J 
a     a 

-h* 

where 

4 
A 

85 

86 

a5   a6   -a5 

1     1       1 

-a6 

1 

A' 

A 

65 

66 

A* 

A* 

(3.61) 

A* 

A* 
^86 

A 65 

A* 

A 67 

168 

= A85e-^h" 

= A86e-Wh> 

= A65e-
n*h3 

= Ame-n^ 

Ave'715*13 

Aese -nehz 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

Solving for A%b and Ale, we obtain 

A* 
^85 

A* 

where 

1 + h3b5   1 + h3b6   1 + h3b5   1 + h3b6 

65 66 65 66 

A 65 

A 66 

A57 

A* 
A58 

(3.68) 

a a 
65 = =  — 1— as, 

K4 K4 

|o;| . a 
h = =  — %— «6, 

K4        K4 

(3.69) 

(3.70) 

Using the third and fourth continuity conditions (i.e. (3.57) and (3.58)) we obtain 

^6     —t& 

A 66 

A* ^68 

-S5     -55 
A 65 

167 

(3.71) 
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where 

s5 = i\3aa5 + A3 (K,3 + 1) n5Ki - (K
2

4 - l) \a\ 

s6 = i\3aa6 + A3 (K3 + 1) n6K4 - [K\ - l) \a\ 

h = 05 [X3«4™5 - I a I («4 + 1)] + "* [«4X3 ~ («4 ~ 1)] , 

*6 = 06 [X3«4™6 - |öi|(«4 + 1)] + i« [«4X3 ~ («4 ~ 1)] , 

A3 = «1 + K4 (A3 (3 - K3) - 2) + 1 

A3 

X3 

X3 
K4 

«3-1 
^40 

M4 

Solving for A*m and Ag8 we obtain 

< 
4* 

A 68 

r5   r7 

r7   ri 

A 

A 

65 

67 

where 

^5 

r7 

A4 

(s5t6 + s6i5) , 

(s5t6 - s6h)' 

=   - (s6i6 + s6te) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

3.2.2    Boundary conditions 

The two boundary conditions for the unknowns A65 and Ae7 come from the tractions 

along the surface. Substituting u3 and v3 into (3.6) and (3.7) we have 

V3yy(x,y) 
M3oe732/ e732/ i     r 

<?3xy(x,y)     =    ^30e732/—   / 

oo 
oo 

(3-«3)MF3 + (K3 + l) 
dGz 
dy 

m 
dy 

+ {ia)G3 eiaxda. 

eiaxda,   (3.83) 

(3.84) 
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Taking the inverse Fourier transform we have 

dG3 K3-1 
(3-K3)(ia)F3 + {K3 + l) 

dy 
dF3 + (ia)G3 

ß^e^y J_ 

1 

dy   '  v"~"'~" ^3oe73S/ j _os 

Defining the contact stresses on the surface as 

(x3yy(t,y)e iatdt, 

a3xy(t,y)e~iatdt. 

a3yy{x,0)   =   a(x), 

a3xy(x,0)   =   T(X), 

Fourier transforms of the tractions on the surface becomes 

/"OO 

P(a)= /     a(t)e-iatdt, 

Q{a) =  /     r(t)e-iatdt. 
J —CO 

Therefore taking the limit of equations (3.85) and (3.86) as y -^ 0 we have 

(3-K3)(ia)F3 + (K3 + l) 

8F:. 

dG3 

dy 

3 + (ia)G3 

«3 - 1 

Uwe™ 
1 

Q(a). 
dy   ' v    ' Ai3oe73y 

Substituting F3(a,y) and G3(a,y) into equations (3.91) and (3.92) we find 

A66 

A67 

A68 

zbo     z56       ^55 z56 

z65    zm    ~z65    ~zm 

. J_  1    («3-l)P(a) 

^30 I Q{a) 

where 

^55 = (3- K3)(ia)a5 + (K3 + l)n5, 

zse = (3-K3)(ia)a6 +(«3 + 1)716, 

z65 = a5n5 + za, 

z66 = a6n6 + ia. 

(3.85) 

(3.86) 

(3.87) 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

(3.97) 
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Substituting A6$ and A68 into (3.93) we obtain 

r6    n 

r8   -r& 

j_\   (K3-l)P(a) 

^ \ Q{a) 
(3.98) 

where 

r6   =   z55 + z56r5e-
h^-n^+z^r7e-h^-n^ 

r8   =   z65 + ze6r5e-
h^-n^-z^r7e-h^-^ 

Thus, the unknowns A65 and A67 become 

1 
-465 

A67 

A*3oA5 

1 

[{K3-l)P{a)n + nQ(a)], 

/W30A5 
[r6Q{a) - {K3 - l)P(a)r8], 

(3.99) 

(3.100) 

(3.101) 

(3.102) 

where 

AB = 

r8   -rä 
= -(r6r8 + r6r8). (3.103) 

3.3    The surface displacement gradients 

So far, we have found all the constants Aij: (i = 5,..., 8, j = 5,..., 8) to determine 

u3(x, y) and v3(x, y) in the Fourier domain. Since displacement vector is specified on 

the part of the boundary y = 0 and the traction vector is specified on the remainder, 

our problem is a mixed boundary value problem. Input to the problem is the y 

component of the displacement gradient at the surface — v3(x,0) and the unknowns 

are the contact stresses a3xy(x,0) = r(x) and a3yy(x,0) = a(x). Thus writing the 

displacement gradients at the surface by taking the derivatives of (3.24) and (3.26) 

with respect to x gives 

lirn^- v3(x,y) 
2/->o dx 

limT- u3(x,y) y->o dx 

lim n y-5-o 2TT 

1    f00 

— /     iaG3(a,y)eiaxda, 
!7T J-00 
1   r°° 

im— /     iaF3(a,y)eiaxda. 
->0 27T J_00 

lim 

(3.104) 

(3.105) 
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Substituting (3.35) and (3.36) into (3.104)and (3.105) we obtain 

d f°° 
\im2irß30^v3{x,y)   =     /     K31(x,y,t)a{t)dt 

/oo 

K32(x,y,t)T{t)dt, (3.106) 
•oo 

lim 2717x30-5-113(2;, y)   =     /     Ka(x,y,t)T{t)dt 
y^o dx J_00 

/oo 

KA2{x,y,t)a{t)dt. (3.107) 
■00 

where 

/oo 

Ma^e-^'-^cta, (3.108) 
-00 

/oo 

Ä32(a,y)c-fa(t-x)da, (3-109) 
■00 

/oo 

Ma,y)e-te(t-s)da, (3.110) 
■00 

/oo 

M^yK^^W, (3.111) 
■00 

M«,v)  =  -^"^(ys^ + yfo), (3.112) 
0 

h32(ct,y)   =   -T- (-y3^e + ysnO, (3.113) 
^5 

^a; 
fc« (a, 2/)   =  --^-(y4r6 + y4r-6), (3.114) 

hi2{a,y)  =  -^^ - 0/4*5 - WnO > (3.115) 
Äs 

y3(a)y)     =     e»5y + r5e-Ä3(n5-n6)+n6y + r7e-Mn5-n6)+n6»j (3.H6) 

y4(a,y)   =   a5e
n^ + a6r5e-

,l3^-"6)+^-äir7e-Ä3^-^)+^.       (3.117) 

The singularities in the kernels come from the asymptotic behavior of the integrands. 

The asymptotic analysis has to be performed in order to extract the singularities as 
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a —> oo. The details of asymptotic expansion of the kernels K3i{x,y,t), K32(x,y,t), 

K±i(x,y,t) and fQ2(:r, y, £) are given in Appendix E. For a —> co the asymptotic 

behavior of h3i(a,y), /i32(a,y), hu{a,y) and /^(cn,y) are as follows: 

Ma,y)   =   -e,,»(-±i+(^ + o(i)), (3.HS) 

«3-1 _  («3 + 1) 73   ]0 (}_ 
4 8      lal       \a' M«,</)   =   el"1» ( -^ - ^^£+0 ( -T I ) • (3-119) 

M^)   =   ^(^+(-±l)-+0(_L)), (3.120) 

M»,»)   =   ^(^ + ^+1)^0(1)). (3.12!) 

We may now write (3.106) and (3.107) as 

d f™ 
lim2iTiJ,Zo—v3(x,y)   =   lim   /     [K31(x,y,t) - K31oo(x,y,t)]a(t)dt 
y-+o ox 2/->o J_00 

/oo 

[ÜT32(^, 2/, <) - K32oo{x, y, t)] r(t)dt 
■00 

/oo 

-FGiooO^y^M*)^ 
■00 

/oo 

K32oo{x,y,t)r{t)dt, (3.122) 
■00 

3 /-oo 
\im2TiiiZQ—-uz{x,y)   =   lim   /     [K^foy,*) - Kilo0(x,y,t)]r(t)dt 
y->" Co; y-»o j_00 

/oo 

[K42(a;,y,i) -K42oo(^;?/,i)]cr(i)^ 
•00 

/oo 

■K4ioo(z,yJ'0'?"C0cfö 
■00 

/oo 

K42oo{x,y,t)a(t,y)dt, (3.123) 
■00 
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where 

K3l0O(xty,t)   =   ^   I" i^e^e-to^da, (3.124) 

K,2oo(x,y,t)   =   --i—   /     eW»e-«(*-*)da, (3.125) 
^ J — oo 

^4ioo(x,y,t)   =   ^-^   [°° i-^re^e-W-^da, (3.126) 

iWz,y,t)   =   ^^   f°° e^e-^-^da. (3.127) 

The first integrals in (3.122)- (3.123) are bounded and, therefore limit can be put 

under the integral sign. Using the following relations for y < 0 

I*"MeWe-^^da   =    f
2{t~x) 2, y < 0, 

7-co     a (t-x)2 + y2 

e|a|»e-ta(t-x)da     = 1 j y<0> 

■ oo (^-^)    +?/2 

it may easily be shown that 

K3l0O(x,ytt)   =    Ä3
2

+1
(t_^+y2> (3-128) 

iW*,y,t)   =   ^f^TT ^—-j, (3-129) 2     (t — x)2 + jr 

iW^)   =    K"tl [t-xf + y^ (3"130) 

*««,(*, !/>*)   =   -^7J3^^- (3131) 

Taking the limit as y —> 0~ in equations (3.122)-(3.123) and noting that 

lim   .     t T *     2    =   -^-, (3.132) 
J/-40- (t - x)1 + yl t — x 

lim- 2—-   =   -*6(t-x), (3.133) 
y-40- (t - x)2 + y2 
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we find 

\imK31oo(x,y,t) =   +^±1-J_, (3.134) 
2/->0 2      t — X 

lim K32oo(x,y,t) =   -^l^it-x), (3.135) 

lim Kiloo(x,y,t) =   +-?-— , (3.136) 
t/->0 2      t — X 

K^ — 1 
lim K42oo{x, y,t) =   H —irö(t-x). (3.137) 
2/-»0 Z 

Substituting (3.134)-(3.126) into (3.122) and (3.123) it may be shown that 

d 2 f°° 
A3—v3{x,0)   = /     a{t)I31{t,x)dt 

dx 7r(«3 + 1) 7.00 

r(t)I32(t,x)dt 
7r(«3 + 1) 7-c 

7T7_0O   t-X 

d                             2 f°° 
\3-z-u3(x,0)   =   — —- /     r(t)Iil(t,x)dt 

OX 7T(K3 + 1) J_0O 7T(K3 + 1) 

poo 

a(t)l42(t,x)dt 
7T(K3 + 1) 

+\rzm+ (3139) 
7T y_oo   t - X 
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where 

I3l(t,x)   =    f" (hnia^-it^y^e-W-^da, (3.140) 
J-oo  V ^       \a\ / 

h2(t,x)   =   j~ (hnia, 0) + ^ll) e-^'-^da, (3.141) 

hi(t,x)   =   j™ U^a^-i^^^je-^-^da, (3.142) 

h2(t,x)   =   J" (^(a^-l^^e-W-^da, (3.143) 

«3-1 

«3 + 1 
4/J30 

(3.144) 

A3   =   -^L. (3.145) 
«3 + 1 

Further refinements can be made by analyzing the kernels I3i(t,x),I32(t,x),hi(t,x) 

and Ii2(t,x) in equation (3.138) and (3.139). Observing that 

/•oo rco 

I3l   =   2       SR [i$3i (a) e-ia{t-x)] da = 2 /    $31 (a) sin a(t - x)da, (3.146) 
Jo Jo 

/•oo rca 

/32   =   2 /    J« [$32 (a) e_ia(t-s)] da = 2 $32 (a) cos a(t - x)da, (3.147) 
Jo Jo 

/•oo rco 

J41   =2/    K [?$4i (a) e-iQ(*-x)] da = 2 /    $41 (a)sina(t - a;)da, (3.148) 
Jo Jo 

/>oo /-oo 

/42   =   2 /    stf [$42 (a) e-ia(*-s)] da = 2        $42 (a) cosa(i - z)c?a, (3.149) 
Jo Jo 

where 

<M<*)   =   -^-^(yzr-s + Ws)-1^!, (3.150) 

$32(0)   =   ^-(-y3ri + y^r6) + ——, (3.151) 
He 4 

$4i(a)   =   —^-(yiü + ifire)-——, (3.152) 
IAQ 4 

ia(«3 - 1) ,   _    _   s     «3 - 1 /,KM 
$42(0)   = y—  (y4r8 - y^s) -;—• (3.153) 

Afi 4 
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we can write (3.138) and (3.139) as; 

where 

-CÜ3T{X 
7T J-, 

1 
t — X 

k31{t,x) a{t)dt 

1   f° 
Lü3a(x) + - I 

T J-c 

i  r°° 
— /    r{t)k32{t,x)dt   =   f3(x), (3.154) 

7T J-oo 

t — X 

7T 

- k41(t,x) r(t)dt 

a(t)k42(t,x)dt   =   g3(x), 

/s(s) 

5s(z) 

A3 

A3i(t,ar) 

k32{t,x) 

hi(t,x) 

h2(t,x) 

d 
A3^3(2;,0), 

4/U30 

«3 + 1 
4        f°° /•oo 

- /     $31 (a) sina(t — x)da, 
1 Jo 

4        f°° 
 —- /    $32 (a)cos a(t- x)da, 
«3 + 1) Jo 

/>oo 

- /    $4i(a)sina(t — x)da, 
1 Jo «3 + 

4        roo 

«3 + 

/•oo 

- /     $42 (a)cos a(t — x)da. 
1 Jo 

(3.155) 

(3.156) 

(3.157) 

(3.158) 

(3.159) 

(3.160) 

(3.161) 

(3.162) 
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Chapter 4 

The Integral Equation and Its 

Solution 

If the direction of the forces P and Q are taken to be as in Fig.   4.1, boundary 

conditions become 

a3yy(x,0) = a{x) 
—p(x) —a<x<b, 

0 x < —a,    x > b. 
(4.1) 

Shear stress at the surface of the medium is related to the normal stress by coefficient 

of friction 77 as follows: 

<r3xy(x,Q) = T(X) =r)a{x) = -r}p(x) (4.2) 

Substituting (4.1) and (4.2) into eq (3.154) we have (3.155) 

UJ37]p (x) + Ub 

K J-a 

1 

-UJ3p (X) + 
7T 

t — X 

V 

t — X 

+ k3i(t,x) +rjk32{t,x) 

+ Vhi{t,x) + ki2(t,x) 

p(t)dt   =   f3(x),       (4.3) 

p(t)dt   =   g3{x).      (4.4) 
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where 

L     ^30 1\ 
A3 -a 

■t 
FGM 

© SS 

\i4=\i30e
y& 

Figure 4.1: Problem geometry 

d 
h(x)   =   A3—v3(x,0), 

9z{x) = 

A3 = 

hi(t,x) = 

k32{t,x) = 

k41(t,x) = 

k42(t,x) = 

A3—U3(x,0), 

4/ 30 

«3 + 1' 
4 

«3 + 
4 

«3 

«3 + 
4 

/>oo 

- /     $31 (a) sina:(£ — x)da, 
1 Jo 

/>oo 

— /    $32(a)cosa(t — x)da, 
1 io 

/•OO 

— /    §41(0:) sma(t — x)da, 
1 ./o 

/>oo 

- /     $42(a)cos a;(t — x)da. 
1 io 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
K3 + JL j0 

In the singular integral equation (4.3) the contact pressure p(x) is unknown, a and 

b, on the other hand depends on the punch profile and is found by applying the 

equilibrium and, if needed, the consistency conditions. The equilibrium of the punch 

requires that the total pressure on the contact area should be equal to the total load 

applied to the punch. This can be expressed as 

J —t 

p{t)dt = P. (4.12) 
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where P is the known compressive force per unit depth in z direction, applied to the 

punch away from the contact region. 

To solve the singular integral equation (4.3) we first normalize the interval (—a, b) 

to (—1,1). This can be done by defining the new variables 

l=*±2, (4.13) 

b + a       b — a ,. . .s 

b + a       b — a ,. n rX 
*=—* + —. (4-15) 

p{x) = <l>(r), (4.16) 

k3l(t,x) = jk*31(s,r), (4.17) 

fc32(t>a:) = y^(s,r), (4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

M*) = = /3*(r), 

a = 
!<■ 

$3i (a) -- = *3l(0, 

$32 (a) = = *32(C), 

73 73 = T = 
1
    u   l 
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The singular integral equation (4.3) then becomes 

where 

A(j>{r) 
IT -1 

B 
+ k*3l(s,r) + r]k*32(s,r) #s)<fc = /8*(r), (4.24) 

A   =   tü3ri, 

B   =   -1, 

k*31(s,r)   = $*3l(Osm((s-r)d(, 
(«3 + 1) Jo 

4        C°° 
k*32(s,r)   =   — — /    $*32(() cos ((s-r)d(, 

*Si(C) 

(«3 + 1) Jo 
C(«3 - 1) 

Ae(C) 
[2/3(0^(0 + yi(C)r8(C)] 

«3 + 1 

«82(0  =  -A^l-ys(0-e(0 + Tz(On(0] + K3   * 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 
Ae(C)L   — — ' - — '      4 

The method of evaluation of the Fredholm kernels k^s, r) and ^(s, r) are shown 

in Appendix F. However when evaluating the Fredholm kernels we end up with the 

integration of sign function, and the logarithmic function log \s — r\.  In the 

integration of k31(s, r) and kl2(s, r) from —1 to 1, we subtract and add this functions 

in order to regularize the integrand. Therefore we may write 

k*31{s,r)   = /   *Si(C) 
.Jo («3 + 1)   [Jo 

4       (K3 + 5)73 7T \s — r 

'(/C3 + I) 8 2 s-r 

sinC(5 — r)d(, — 
(K3 + 5)73*7T|S 

8 2 s 

^32VS> r) 
(«3 + 1) 

4       («3 + 1)73 
(«3 + 1) 8 

$;2(C)cosC(5-rK-^^logk-r| 
0 8 

log 15 
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4.1    The fundamental function 

The dominant part of the singular integral equation of the second kind (4.24) is of 

the form 

M{r) -- [   ^~ds = F(r).        -1 < r < 1, (4.31) 
7T J_x s - r 

where the bounded function F{r) contains part of the integral equation with the 

Fredholm kernels. Defining 

^=hLj^" (4-32) 

and using the following general Plemelj formulas 

,   Sir) -1 < r < 1, 
$+(r) - $-(r)   =    {     K ' (4.33) 

0 r < -l,r > 1, 

1    f1  M-ds, -1 < r < 1, 
$+(r) + $-(r)   =    {   mJ-iS-r (4.34) 

2$(r), r<-l,r>l. 

we may reduce (4.31) to the following Riemann-Hilbert problem for the sectionally 

holomorphic function $(z): 

<S>+(r) = G$-(r) + g(r), (4.35) 

where 

G   -   £±f (4.36) 

9(0   =   f^l (4-37) 

Considering the corresponding homogeneous equation 

I+(r)-GX-(r)=0, (4.38) 

54 



we obtain the fundamental solution X(z) and the fundamental function w(x) of (4.31) 

as [43] 

X(z)   =   (z-l)a{z + l)ß, (4.39) 

w(r)   =   (1 - r)a(r + 1)*, (4.40) 

where 

a   =   a± + ibi + N, 

ß   =   a2 + ib2 + M, 

a\ + ibi   — 

a2 + ib2   = 

If A > 0, we define the angle, 9, such that 

A + i   =   re1 

A — i   =   re' 

6 

InG 

InG 
~~27ri' 

arctan — > 0. 
A 

Therefore equation (4.43) and (4.44) becomes 

ai + ibi 
2m TV 

a2 + ib2 2m 
me 2i6 6_ 

71 

yielding 

e 
a   =   N + -, 

ß   =   M-6-. 
IT 

However, If A = — A0 < 0,we define the angle, 0, 

6 = arctan >0. 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 
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From equation (4.36) G becomes 

A0 + i 

We define the angle, 9 as 

A0 + i   =   reie, (4.51) 

A0-i   =   re-ie, (4.52) 

arctan ( 4" ) > 0. (4-53) 

Therefore equation (4.43) and (4.44) becomes 

ai-hih   =   -Llne-
2ifl = --, (4.54) 

a2 + ib2   =   --^-lne-2ie = -. (4.55) 
27TZ 7T 

Consequently 

a   =   N--, (4.56) 
7T 

ß   =   M + -, (4.57) 
7T 

where JV and M are arbitrary (positive,zero, or negative) integers and they are deter- 

mined from the physics of the problem. The index of the integral equation is defined 

by 

K„ = -(a + /3) = -(./V + M). (4-58) 

we observe that in the punch problem with friction A = 77(^3 - 1)/(K3 +1). Therefore, 

the powers of stress singularity a and ß will depend only on the coefficient of friction 

x] and the value of the Poisson's ratio on the surface of the FGM layer. In this 

study the Poisson's ratio is assumed to be constant, consequently a and ß would be 

independent of the non-homogeneity parameter 73^3- 
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4.2    Numerical Procedure 

We have derived the singular integral equation for the punch problem. The integral 

equation has a Cauchy kernel and two Fredholm kernels. The solution of the singular 

integral equation is generally obtained either through function theoretical technique as 

given by Muskhelishvili [43] or through numerical methods [44] and [45]. In this study 

the method of using orthogonal polynomials with the unknown functions represented 

by Jacobi polynomials, associated with the weight function w(s) and described in [46] 

is used. 

The singular integral equation does not have a closed form solution. Hence a 

numerical method has to be used. In this study Jacobi polynomials are used to reduce 

the singular integral equation to an infinite system of linear algebraic equations. 

Once the fundamental function, w(s) of the integral equation is determined, the 

solution of (4.24) may be expressed as 

<f>(s) = G(s)w(s),        -1< s < 1, (4.59) 

where G(s) is a bounded continuous function and can always be represented by an 

infinite series. Observing that w(s) is the weight function of the Jacobi Polynomials, 

one may write 
oo 

<ß(8) =^^{8)1^^(8), (4.60) 
0 

where cn, (n = 0,1,...) are undetermined constants. 

By substituting (4.60) into (4.24) and making use of the property of the Jacobi 

polynomials(A.6), we find 

/*(r),        -Kr<l, (4.61) J2Cn 
o 

where 

2'K°BPtZß)(r)+)C3n(r) 
sinira    n K° 

WO = " /   [*si(*,r) + vk%a(s,r)]P!i
a>»(8)w(s)ds. (4.62) 

57 



The functional equation (4.61) can be reduced to a system of algebraic equations 

in cn through a suitable collocation technique. In the numerical solution of (4.61), 

higher accuracy is obtained when the density of the collocation points is increased 

near the ends by choosing the collocation points (ri: i = 0,1,..., TV) as the roots of 

the Jacobi polynomials depending on the index of the problem. 

4.3    The In-plane stress, axx on the surface 

Once we obtain the solution for the contact stresses a (x) and r (x), we can find the 

in plane a3xx stresses on the surface of the FGM coating. The strains in y and z 

direction can be written as 

e3yy     =     TT [<7Zyy ~ Vz{°Zxx + 0~3zz)] , (4-63) a3 

f-Zzz     =     -Er[(73zz-V3(V3xx + (?3yy)}, (4-64) 
£,3 

In the plane strain case (e3zz — 0) the stress in z direction becomes 

03zz = ^fazx + <73yy)- (4-65) 

Substituting this stress back into equation (4.63), we obtain   . 

e3yy{x,y) = —^-cjZyy(x,y) - ^3 a3xx{x,y). (4.66) 
Jb3 £/3 

We also have 

K3 = 3 - 4^3) (4-67) 

E30   =   2fi3o (1 + v3) = A*30 — 2^, (4-68) 

=    _(«3-7)(«3 + l) ( } 

3 16 ' v       ; 

,3(1+ ,3)   =   (3"^7"K3). (4.70) 
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Thus 

\-v\ _ K3 + 1 

-S30 8)"30 

^3(1 + ^3) 3 - K3 

(4.71) 

(4.72) 
■^30 8/^30 

Substituting (4.71) and (4.72) into equation (4.66) and taking the limit as y —>- 0 we 

find 

e3yy (x, 0) = —v3(x, 0) = -J 0-3^,(2:, j/) - — -a3xx(x, y) (4.73) 
oy ofiso oß3o 

Substituting — u3(x, 0) and —u3(a;, 0) from equations (4.4) and (4.73) into equation 
ox oy 

(3.5) and after some algebra it can be shown that 

'*   r(t) 2   f 

K J-a t — X 
-dt 

/b                                                n     pb 

fc4i (*, a:) r(t)dt /   kA2 (t, x) a(t)dt (4.74) 

where 

k4l(t,x) $41 (a) sina(t — x)da, 
«3 + 1 Jo 

4       f00 

k4z(t,x)   = /    $42(a)cosa(t — x)da, 
K3 +1 Jo 

(4.75) 

(4.76) 

or in a compact form 

ozxxix, 0) = ap
xx(x, 0) + o^fo 0), (4.77) 

where 

<7 X 

J —a 

/    h2(t,x)a(t)dt1 
J —a 

t — X 
kAl (t, x) T(t)dt. 

(4.78) 

(4.79) 
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Chapter 5 

Results of Rigid Stamps 

5.1    The Flat Stamp 

Consider the contact problem for the FGM layer bonded to a homogeneous substrate 

shown in Fig. 5.1 where the stamp profile is given by 

v3{x,0) =-vzo- (5.1) 

From (5.1) it follows that 

JUsMHO. (5-2) 

We now define the tractions on the boundary 

cr3yy{t,0)   =   -p(t),        aZxy(t,0) = -rip(t),        -a<t<a, 

^3TO(*,0)   =   c7-3sy(t,0) = 0, t<-a,t>a, (5.3) 

and making use of the following change of variables 

x   =   ar, (5.4) 

t   —   as, (5.5) 
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i_   ^30 i 
-a 

yk 

# 

Q=T\P 

a       FGM 

© SS 
^4 = ^30^3 

X 

Figure 5.1: Geometry of the flat punch problem 

and defining 

p(t)   =   2a0(f>(s), 

P 
a°   =    2? 

(5.6) 

(5.7) 

and using the relations (4.17)-(4.23) integral equation (4.3) and the equilibrium equa- 

tion (4.12) become 

A(f>(r) + 
7T s — r 

+ k*31(s,r) + r]kl2(s,r) <j>(s)ds = /3* (r) 

/    <f)(s)ds = 

(5.8) 

(5.9) 

where 

A    =    UJ3rj, 

/s(r)   =   0, 

&3l(s>r)     =     -&3l(s>r)> 

^32(s,r)   =   -k^2(s,r). 
LI 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

Since p(x) has integrable singularities at x = —a, and £ = a, from the physics of the 

problem we must require that both a and ß be negative. 
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If 77 > 0 from equations (4.48) and (4.49) we have 

a 

ß M-i, 
IT 

N = -l, 

M = 0, 

and if 77 < 0 equations (4.56) and (4.57) give 

a 

ß 

TV 

e 
M + -, 

7T 

JV = 0, 

M = -l. 

The index of the integral equation is defined by 

Ko = -(a + ß) = -(N + M) = l. 

a and ß then become 

77 > 0 :    a = -1 + 9/ir,    ß = -9fir, 

v = 0:    a = -0.5, ß = -0.b, 

77 < 0 :    a=-B/ir, ß = -l + 6/n, 

where 

9 = arctan «3 + 1 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
V («3 - 1) 

In Table 5.1 some values of the a and ß are given for various values of 77 and v = 0.3. 

Assuming a solution of the form 

cf>(s)   =   w(s)J2cnPia'ß)(s), 
0 

w(s)   =   (l-s)a(l + s)ß, 

(5.21) 

(5.22) 

considering the property of Jacobi Polynomials (A.6), letting 

K*n(r) = ~ f   [kt1(s,r) + rjkl2(s,r)}w(s)P^\s)ds, (5.23) 
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Table 5.1: Values of a and ß for the index, K0 = 1 

V a ß 
-0.3 -0.4728 -0.5272 
-0.1 -0.4909 -0.5091 

0 -0.5000 -0.5000 
0.1 -0.5091 -0.4909 
0.3 -0.5272 -0.4828 

and truncating the series in (5.21) at N, equation (5.8) becomes 

N 

Ec" I sin 7ra 
0 (5.24) 

Equation (5.24) provides N equations for N + 1 unknown constants C0,...,CAT. The 

additional equation for a unique solution is provided by the equilibrium condition 

(5.9), which becomes 

J>/   w (s) P^ (s) ds = 1. (5.25) 
o       •'~1 

Using the orthogonality condition (A.7), we obtain the following N + 1 equations 

c06>o   =   1, 
JV 

Y^CnFn{n)     =     0, i = l,...,iVs 

where 

I sm ira 

In (5.28) Ti (i = 1,..., N) are obtained by setting 

P^t1,/3+1) in) = o,      i = i,...,iv. 

From (5.6), it then follows that 

p(r)   =   2a0(/)(r) 
N 

=   2a0w(r)YJCnPia'ß)(r). 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 
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Or, in physical coordinates 

N 
p{x) ^-y^irz«-*'»®-      (-) a0 .„..„-      0 

The contact stresses can then be obtained in nondimensional form as 

^M)    =   _^)=_2(1_^Vi + ^/5f cnP^UX-),      (5.32) 

V2yy (X, 0)      = ^P (x) ^ ^^ 

and by using equation (4.74). 

**** (*, 0) = a (x) + ^ f P^-dt - - r [ki2 (i, x) + Vk41 (t, x)] a (t) dt.    (5.34) 
IT   J_at- X 7T J_a 

It may also be shown that 

<73xz (X, 0)     =     -p (X) - ^   f f^-dt + -   f [*42 (*, X) + ^41 (t, x)] p (t) dt ■K   J_at-X 7T J_a 

=   2a0 \-4> (r) - ^ f1 ^-dt + - I' [k*i2 (s, r) + Vk*4l (s, r)] <t> (s) ds] , 
[ 7T  J_x s - r IT J_x J 

Or defining 

a3*s M) =-2a0<Mr), (5.35) 

V» (r) = 0 (r) + ^ f ^-dt - - T [A& (5, r) + Ä (a, r)] </> (s) ^ (5.36) 

The nondimensional in-plane streses a5xx (x, 0) would then become 

^M) = _2^ (r) 

In Figure 5.2 - 5.3 the stress distribution on the surface of the FGM coating loaded 

by a rigid flat stamp is given for various values of the stiffness ratio 1^ = ^4/^30 in 

the case of no friction and a/h3 — 0.1, 0.5 respectively. The ayy stress distribution 

is symmetric and unbounded at the ends of the stamp. For the stiffenning coating 
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on the hard substrate(r3 = 8) the in-plane stress axx at the surface of the coating 

is positive outside the contact zone. However for the softening coating on the soft 

substrate (r3 = 1/8) axx is negative everywhere along the surface of the coating. Also 

for the softening coating, the contact pressure ayy at the ends of the contact zone is 

higher than the stiffening coating. 

Figures 5.4 -5.9 give the stress distribution on the surface of the FGM coating 

loaded by a flat stamp is given for various values of the stiffness ratio T3 = //4/M30, 

a/h3, and 77. At the trailing edge of the contact the inplane stress oxx is positive 

infinite wheras at the leading edge the axx is negative. Therefore the possible site of 

crack initiation is at the trailing edge. 

5.1.1     Stress intensity factors 

Mode I stress intensity factors at the ends of the stamp can be defined as 

M")   =   lim-^L = ^fc„P^)(l), (5.37) 
2? (a-XT'       a 

0 

N 

h(-a)   =    lim-^L = 5E^Q,/3)(-l)- (5-38) 

The non-dimensional stress intensity factors may then be expressed as 

a N 

kl(a)   =   ^kl(a) = J2c"Pna'ß)(l)> (5-39) 
2(7o V 

2a0 Y 

Table 5.2-5.3 gives the normalized stress intensity factors at the ends of the flat 

stamp by assuming u = 0.3, for a/h3 = 0.1, 0.5 respectively. 
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Table 5.2: Stress intensity factors for flat stamp, a/h$ = 0.1 

77 = 0.0 7? = 0.1 77 = 0.3 77 = 0.5 

a =-0.5 
ß = -0.b 

a = -0.5091 
ß = -0.4909 

a = -0.5272 
ß = -0.4728 

a = -0.5452 
ß = -0.4548 

r3 
kx(d) 

Paß 

fti(-a) 
Paa 

fci(a) 

Pa^ Paa 

ki(a) 

P^ 

fci(-a) 

PaQ Paß 

8 
2 
1 

1/2 
1/8 

0.2802 
0.3038 
0.3183 
0.3355 
0.3813 

0.2769 
0.3025 
0.3182 
0.3366 
0.3855 

0.2833 
0.3048 
0.3182 
0.3341 
0.3768 

0.2696 
0.2991 
0.3171 
0.3382 
0.3933 

0.2885 
0.3060 
0.3171 
0.3305 
0.3673 

0.2615 
0.2949 
0.3151 
0.3386 
0.3999 

0.2926 
0.3062 
0.3151 
0.3261 
0.3572 

Table 5.3: Stress intensity factors for fiat stamp, a/hz = 0.5 

77 = 0.0 77 = 0.1 77 = 0.3 77 = 0.5 

a = -0.5 
/5 = -0.5 

a = -0.5091 
ß = -0.4909 

a = -0.5272 
ß = -0.4728 

a = -0.5452 
ß = -0.4548 

r3 Paß 

h(-a) 
Paa 

fci(a) 

Paß 

h(-a) 
Paa 

fei(a) 

Paß 

fcx(-a) 

PaQ 

ki(a) 

Paß 

8 
2 
1 

1/2 
1/8 

0.2086 
0.2700 
0.3183 
0.3848 
0.6011 

0.1973 
0.2657 
0.3182 
0.3895 
0.6178 

0.2199 
0.2740 
0.3182 
0.3800 
0.5844 

0.1754 
0.2565 
0.3171 
0.3979 
0.6510 

0.2422 
0.2814 
0.3171 
0.3696 
0.5511 

0.1549 
0.2467 
0.3151 
0.4053 
0.6834 

0.2635 
0.2876 
0.3151 
0.3587 
0.5185 
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5.2    The Triangular Stamp 

Consider the stamp problem for the FGM layer bonded to a homogeneous substrate 

shown in Figure 5.10. The stamp profile is given as 

^3(2,0) = mx + C. (5.41) 

Therefore, 

dx 
V${x, 0) = 771. 

Letting 

(5.42) 

<Jyy(X,0) = -P(X), aXy(x,0)    =    "^(x), 0    <   X    <    Ö, 

<7yy(x,0)   =   axy(x,Q)=0, x<0,x>b, 

the integral equation (4.3) and the equilibrium equation (4.12) becomes 

1 
Ap (x) + I f 

Wo t — X 
+ k31(t,x) +r)k32{t,x) p(t)dt = f3{x), 

(5.43) 

(5.44) 

/ p(t)dt = P, 
Jo 

(5.45) 
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where 

A   =   ui3rj, 

K3 - 1 
co3 

A3 

«3 + 1' 
4^30 

«3 + 1' 
d 

fs(x)   =   A3 — v3(x,0) = A3m. 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

Now, using the following change of variables in order to normalize the interval (0, b) 

b 

2 
b 

x   =   -^{r + l) 

t   =   -(s + 1) 

(5.50) 

(5.51) 

p(t) = A3m</>(s), (5.52) 

and using the relations (4.17)-(4.23) integral equation (5.44) and the equilibrium 

equation (5.45) become 

A<P(r) + - f 
s — r 

+ k*3l(s,r) + rjk*32(s,r) 4>(s)ds = 1, 

where 

1 2P 

hi(s,r)   =   -^k31{s,r), 

2 
k32(s,r)   =   -^k*32{s,r). 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

Since the triangular stamp has a sharp corner at x = 0, and a smooth contact at 

x = b, from the physics of the problem we must require that a be positive and ß be 

negative. 
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If r] > 0 from equations (4.48) and (4.49) we have 

a   =   N+-,    =>     N = 0, (5.57) 
7T 

ß   =   M--,    =>     M = 0, (5.58) 
7T 

and for r/ < 0 from equations (4.56) and (4.57) it follows that 

a   =   N--,    =>     JV = 1, (5.59) 
7T 

/?   =   M + -,    =*     M = -l. (5.60) 

The index of the integral equation is defined by and obtained as 

K0 = -(a + /3) = -(jV + M) = 0. (5.61) 

a and ß then becomes 

rj > 0 :    a = 0/TT, /? = -0/TT, 

77 = 0 :    a = 0.5, /3 = -0.5, (5-62) 

77 < 0 :    a = 1-0/TT,    /? = -l + 0/7r, 

where 

0 = arctan (5.63) 

In Table 5.4 some values of a and /3 are given for various values of 77. 

Assuming a solution of the form 

00 

0(5)   =   w(s)Y,cnP^ß\s), (5-64) 
0 

w{s)   =   (l-s)Q(l + s)ß, (5.65) 

considering the property of Jacobi Polynomials (A.6) and letting 

Wr) = " f   [*&(*.r) + Ä(S,r)]w(s)P^\s)ds, (5.66) 
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Table 5.4: Values of a and ß for the index, K0 = 0 

V a ß 
-0.3 0.5272 -0.5272 

-0.1 0.5091 -0.5091 

0 0.5000 -0.5000 

0.1 0.4909 -0.4909 

0.3 0.4728 -0.4728 

after truncating the series in (5.64) at N, the integral equation (5.53) becomes 

JV 

J2°n —Pta>-ß\r)+lC3n(r) = 1. (5.67) 
_sm -na 

In this problem, after the application of a given load, one end of the contact length ( 

i.e. b) is unknown. However for a given value of the contact length, equation (5.67) 

provides N + 1 equations for TV + 1 unknown constants (co,..., CN) as follows: 

N 

J2cnFN(ri) = l,        i = l,...,N+l, (5.68) 

where 

simta 

and r-j (i = 1,..., N 4-1) are defined by 

(5.69) 

(5.70) 

The relationship between P and b can be found from the equilibrium equation (5.54) 

IP 
CQOQ 

\3mb 
(5.71) 

where 60 is given in (A.8) 

#0 = ^ 
2-na 

sm7ra 
(5.72) 
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The load versus contact relation can, therefore, be obtained from (5.71) as 

p      2c0e0 

ßzorn      KZ + 1 

The solution of the problem then becomes (5.52) 

p(x)   =   \3m4> (r) 

Ajj,zom fl-r 

-b. 

1^1)   $>P<-<»(r). (5.73) 
K3 + I \l + rj 

In nondimensional form, the contact stresses can be expressed as 

°3™ {X>0) = — (—XYcnpW\2x/b-l). (5.74) 
ß30m K3 +1 V   x   )   ^ 

Defining 

ozxx (x, 0) = \3mip (r) (5.75) 

the in-plane stresses, a3xx (x, 0) can be found by using equation (4.74), as follows: 

azxx (x, 0) = a (x) + ^ / p^-dt - - [ [ki2 (t, x) + Vk41 (t, x)] a (t) dt,     (5.76) 

Using equation (5.43), equation (5.76) becomes 

2?7   Cb v(t) 2   fb 

crzxx {x, 0)   =   -p {x) - — /   P-^dt + - /   [Ä42 (*, a;) + Tjfc« {t, x)} p (t) dt 
7T   J0    t-X 7C J0 

=   A3m \-4> (r) - ^ f ^-dt + - f1 [k*42 (s, r) + Vklx (s, r)] <f> (s) ds 

Thus, from (5.75) it may be seen that 

1> (r) = -4 (r) - ^ T ^-dt + - T [k*42 (s, r) + Vk*41 (s, r)] cj> (s) ds. 
7T J_x s -r -K J_x 

The nondimensional in-plane streses a3xx (x, 0) then becomes 

&3xx {x,0) 4 
-?p (r). 

ßwtri K3 + 1 
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Figure 5.11-5.12 give the stress distribution and the load versus contact length 

curves of an FGM coating loaded by a triangular stamp for various values of the 

stiffness ratio, F3 = /x4/'yu30 in the case of no friction and b/h3 - 0.2,0.5 respectively. 

The contact pressure ayy is bounded at x = b and is zero. On the other hand, it 

is unbounded at the sharp edge x = 0. The ayy stresses for the stiff substrate and 

the stiffening coating(e.g.r3 = 8) are greater than those of the soft substrate and the 

softening coating (e.g. T3 = 1/8). The peculiar behavior of the in-plane stress axx 

is such that it is tensile for T3 > 1 and zero for T3 = 1( homogeneous coating) and 

compressive for T3 < 1 at x < 0. However at x = b the oxx stresses have a peak as 

T3 increases. Note that all the stress components are zero outside the contact zone 

for the homogenous coating. By looking at the load versus contact length curves we 

can deduce that for the same load P* the contact length increases for the softening 

coating (r3 < 1) and it decreases for the stiffening coating ( T3 > 1). Or in other 

words, for stiffening coatings F3 > 1, it requires larger load to get the same contact 

length compared to the softening coatings ( T3 > 1). There is a linear relationship 

between the load and the contact length for the homogeneous coating. Also as the 

contact length b increases or the thickness of the coating /i3 decreases or in other 

words b/hs increases the magnitude of the contact stresses increase. 

Figures 5.13-5.18 give the stress distribution and the load versus contact length 

curves of an FGM coating loaded by a triangular stamp for various values of the 

stiffness ratio, T3 = ^4/^30 by fixing the coefficient of friction, 77 and b/h3. Again, 

the magnitude of ayy stresses increases as T3 increases. The maximum tensile stress 

occurs at the trailing edge of the contact, x = b for the stiffening coating F3 > 1. 

Note that the homogeneous coating has also a peak at the trailing edge of the contact. 

We now fix the stiffness ratio, T3 and b/h to see the effect of the coefficient of 

friction on the contact stresses in Figures 5.19-5.20. For the stiffening coating on a 
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stiff substrate(r3 = 8) there is no significant change in the ayy stresses. However as 

rj increases the axx stresses increases at the trailing edge and are tensile. There is no 

significant change also in the load versus contact length curves due to the variation 

of the coefficient of friction. In the case of the softening coating on a soft substrate 

T3 = 1/8 the behavior of the streses are the same except they are low in magnitude. 

The amount of load applied to the stamp P* decreases as 77 increases for the same 

contact length b/h3. 

5.2.1    Stress intensity factor 

The mode I stress intensity factor at the end of the stamp can be defined as 

kl (0) = limsM*) = ^^Ec„P^(-l)- (5-77) 

The non-dimensional stress intensity factor can be defined as 

*; (o) = ^% = -4T i>pi^(-i)- (5-78) fj,30mba      K3 + 1 ^ 

Tables 5.5-5.6 give the normalized stress intensity factor at the sharp end of the 

triangular punch according to the direction of application of the force Q by assuming 

v = 0.3. The stress intensity factor increases as T3 increases. That is if the stiffness 

of the coating increases in the depth direction the stress intensity increases. The 

opposite is true for the coating whose stiffness decreases in the depth direction. Also 

for (r3 > 1) the stress intensity factor increases as the coefficient of friction r? increases, 

however for (r3 < 1) the stress intensity factor decreases as the coefficient of friction 77 

increases. Another point is the fact that for (r3 > 1) stress intensity factor increase as 

b/h3 increases however for (r3 < 1) stress intensity factor decrease as b/h3 increases. 
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Table 5.5: Stress intensity factors for triangular stamp, b/h3 = 0.2 

f 

Q=r\P 

T] = 0.0 7] = 0.1 T) = 0.3 77 = 0.5 
a = +0.5 
/3 = -0.5 

a = +0.4909 
ß = -0.4909 

a = +0.4728 
/3 = -0.4728 

a = +0.4548 
/3 = -0.4548 

r3 
*i(0) 

fx30mba 
fci(0) 

ß30mba 
fei(0) 

jj,3Qmba 
fci(0) 

H30mba 

8 
2 
1 

1/2 
1/8 

1.6247 
1.4976 
1.4286 
1.3550 
1.1912 

1.6430 
1.5041 
1.4280 
1.3467 
1.1677 

1.6751 
1.5128 
1.4234 
1.3279 
1.1224 

1.7005 
1.5160 
1.4142 
1.3063 
1.0789   . 

Table 5.6: Stress intensity factors for triangular stamp, b/hz = 0.5 

7] = 0.0 7] = 0.1 77 = 0.3 77 = 0.5 
a = +0.5 
/3 = -0.5 

a = +0.4909 
ß = -0.4909 

a = +0.4728 
/? = -0.4728 

a = +0.4548 
/? = -0.4548 

r3 
fci(0) 

fj,30mba 
fci(0) 

H30mba 
fci(O) 

H30mba 
fci(O) 

H30mba 

8 
2 
1 

1/2 
1/8 

2.1922 
1.6876 
1.4286 
1.1794 
0.7522 

2.2358 
1.6976 
1.4280 
1.1736 
0.7470 

2.3188 
1.7132 
1.4234 
1.1593 
0.7347 

2.3951 
1.7228 
1.4142 
1.1418 
0.7203 
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Figure 5.21: Geometry of the semi-circular stamp problem 

5.3    The Semi-circular Stamp 

The semi-circlar stamp shown in Figure 5.21 has a profile of the form 

v3(x,0) = -v30 + 
x 

2Ro 
(5.79) 

Thus, 

3 x 
—v3(x,0) = —. 
ox R2 

(5.80) 

The tractions on the boundary are defined as: 

a3yy(x10)   =   -p(x),        a3xy(x,0) = -rjp{x),        0 < x < b, 

<j3yy(x,0)   =   03x1,(3;, 0) = 0, x<0,x>b. (5.81) 

93 



In order to solve the integral equation the limits of integration have to be normalized. 

Now setting 

t — t R2, 

x = x*R2, 

b = b*R2, 

p(t) = p*{f), 

•n-2 

k32{t,x) 
R. 

"^32 (^  > x j> 

(5.82) 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

the integral equation (4.3) and the equilibrium equation (4.12) become 

Ap*(x 
7T Jo t* — X* 

+ k*31(t*,x*)+r]k;2(t\x*) 

b* x P 
p*{t*)dt* 

Ro 

p*(t*)dt* = f;(r),     (5.88) 

(5.89) 
'0 •il-2 

Further normalizing the integration limit from (0,&*) to (—1,1) by the following 

change of variables 

b* 
f = T(. + D. -1 < s <l (5.90) 

X*     = 
6* 
T(r + 1), -1 < r < 1 (5.91) 

p*(0 = 
6* 

(5.92) 

31(t ,x )    = 
2 - 

(5.93) 

32 V*  11  )     = 

2 ~ 
■^k32(s,r), (5.94) 

and using the relations (4.17)-(4.23) integral equation (5.88) and the equilibrium 

equation (5.89) become 

A(f>(r) + 
TV -1 

1 
s — r 

+ fc3i(s,r)+ 77^32(5, r) <Ks)ds = f; (r), (5.95) 
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,/(s)ds = Fx5v (5.96) 

where 

A 

A3 

/s <r) 

V, 
K3 - 1_ 

«3 + 1 
4/^30 

«3 + 1' 

r + 1. 

(5.97) 

(5.98) 

(5.99) 

Since the index of the problem, K0 = 0, is the same as in the triangular stamp, the 

fundamental solution is also the same. 

Assuming a solution of the form 

00 

(5.100) 
0 

w(s)   =   (l-s)a(l + s)ß, 

considering the property of Jacobi Polynomials (A.6), and letting 

/C3„(r) = - f   \hi(s,r)+r,k32(s,r)}w(s)Pia'ß\s)ds, 

after truncating the series in (5.100) at N, (5.95) becomes 

(5.101) 

(5.102) 

N 

0 

—Pta'-ß)(r) + JCzn(r) 
simra 

r + 1. (5.103) 

By using a method of collocation, equation (5.103) provides iV + 1 equations for iV + 1 

unknown constants Co, ...,c/v as follows: 

N 

^2cnFN(ri)   =   n + 1,       i = l,...,N + l, 

smna 

where r; (i = 1,..., N + 1) are defined by 

FN(n)   =   ^J—P^-^CrO + ZCsnCrO, 

(5.104) 

(5.105) 

p^-1,^1) (r.} = 0_ (5.106) 
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The relationship between P and b can be found from the equilibrium equation (5.96) 

and using the orthogonality of Jacobi polynomials (A.7) as follows: 

where from (A.8) 

c^o= i^Tir' (5-107) 

0O = 2ESL. (5.108) 
sm7ro; 

The load versus contact area relation can, therefore, be obtained from (5.107) as 

P* = —= -^U*2. (5.109) 
/X30i?2 «3 + 1 

The unknown b* can then be found as follows: 

*-k-Ji£>-- (5-110) 

The solution then becomes 

p'(t*)   =   ^Ffts), 

2/^30      L*(b*-t*\     V~^ _   r>(a.8)  (Zt 

In Nondimensional form the contact stresses become 

N 

^(^JE^S-1)-    (5-IU) 

^fr*.0)   =  —<L-h*(hLj^\ yCnp^ß\2x*/b*-i),    (5.H2) 
/^30 «3 + 1       V      X*      )       Q 

axy(x*,0)   =   Wyy(x*:0). (5.113) 

Defining 

7* 

03xx(x,O) = X3-i/>(r), (5.114) 

the in-plane stress, a3xx (x, 0) can be found by using equation (4.74) as 

ozxx (x, 0) = a(x) + — f p^-dt - - [ [ki2 (t, x) + 77/C41 {t, x)] a (t) dt.    (5.115) 
7T   J0   t - X It J0 
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Using equation (5.81), equation (5.115) becomes 

<T3zx (X, 0)     =     -V (X) - —  [   P^-dt +-  [   [k42 (t, x) + 7^41 (*, X)] p (t) dt 
-K  J0   t - X ft J0 

-   A6* -0(r)-^ /   *i*Ldt+- [   [kl2(s,r)+71ktl(s,r)]^(s)ds 
■K J-iS-r -K J_x 

Therefore, from (5.114) it is seen that 

$ (r) = -<ß (r) - ^ f1 ^-dt + - f [kt2 (s, r) + r,k\x (s, r)] <f> (s) ds.      (5.116) 
7T J_xs-r IT J_x 

Thus, the nondimensional in-plane stress a3xx(x, 0) may be obtained from (5.114) 

and (5.116) as follows 

oaxxM) = _2_6> (r) _ 
M30 «3 + 1 

Some results showing the effect of the stiffness ratio, T3 = ^4/^30 on the stress 

distribution and the load versus contact length are given in Figures 5.22-5.24 for an 

FGM coating loaded by a semi-circular stamp in the case of no friction and b/h3 = 

0.01,0.025,0.05 respectively. The stress ayy for the stiff substrate and the stiffening 

coating(r3 = 8) are greater than those of the soft substate and the softening coating 

(r3 = 1/8). The in-plane stress axx is tensile for T3 > 1, zero for T3 = 1( homogeneous 

coating) and compressive for r3 < 1 for x < 0 as in the triangular stamp case. At 

x = b the axx take a peak as T3 increases. Note that all the stress components are 

zero outside the contact zone for the homogenous coating. By looking at the load 

versus contact length curves we can deduce that for the same load P* the contact 

length increases for the softening coating (r3 < 1) and it decreases for the stiffening 

coating ( T3 > 1). There is a parabolic relationship between the load and the contact 

length for the homogeneous coating. Also as the contact length b increases or the 

thickness of the coating /i3 decreases or R2 decreases, the magnitude of the contact 

stresses increase. 
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Figures 5.25-5.38 give the stress distribution and the load versus contact length 

curves for an FGM coating loaded by a semi-circular stamp for various values of the 

stiffness ratio, T3 = ^4/^30 by fixing the coefficient of friction, 77 = 0.1,0.3,0.5 and 

b/R2 = 0.01,0.025,0.05 and #2/^3 = 20. Again, the magnitude of ayy increases as 

T3 increases. The maximum tensile stress occurs at the trailing edge of the contact 

region, x — b for the stiffening coating T3 > 1. Note that the homogeneous coating 

has also a peak at the trailing edge of the contact. 

We now fix the stiffness ratio, T3 and b/h to see the effect of the coefficient of 

friction on the contact stresses. The results are given in Figures 5.37-5.38. For the 

stiffening coating on a stiff substrate(r3 = 8) there is no significant change in ayy. 

However, as 77 increases axx increases at the trailing edge and are tensile. There is no 

significant change also in the load versus contact length curves due to the variation 

of the coefficient of friction. In the case of the softening coating on a soft substrate 

F3 = 1/8 the behaviour of the streses are the same except they are low in magnitude. 

The amount of load applied to the stamp P* decreses as 77 increases for the same 

contact length b/R2. 

5.3.1    Stress intensity factor 

The mode I stress intensity factor at the end of the stamp, x = 0, can be defined and 

expressed as 

9.,     7.1+Q N 

h (0) = l\mx°P(x) = Jf^^-Hm VcP^C-l). (5.117) 

The non-dimensional stress intensity factor then becomes 

0 

Tables 5.7-5.9 give the normalized stress intensity factors at the sharp end of 

the semi-circular punch according to the direction of application of the force Q by 
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Table 5.7: Stress intensity factors for semi-circular stamp, bjRi = 0.01, Ä2A3 = 20 

p 

mo I 
®V 

>-  

FGM 

© SS 

\i4=[i30e
J^ 

77 = 0.0 77 = 0.1 77 = 0.3 77 = 0.5 
a = +0.5 
ß = -0.5 

a = +0.4909 
ß = -0.4909 

a = +0.4728 
ß = -0.4728 

a = +0.4548 
ß = -0.4548 

r3 
*i(0) *i(0) fci(0) fci(0) 

(ß30V+«)/R2 (/i30&1+a)/Ä2 (/i30&1+Q)/Ä2 (/i30&1+Q)/i?2 

8 
2 
1 

1/2 
1/8 

0.8123 
0.7488 
0.7143 
0.6775 
0.5956 

0.8119 
0.7404 
0.7010 
0.6588 
0.5656 

0.8082 
0.7214 
0.6729 
0.6209 
0.5087 

0.8007 
0.6998 
0.6432 
0.5829 
0.4558 

assuming v = 0.3. The stress intensity factor increases as r3 increases. That is if 

the stiffness of the coating increases in the depth direction the stress intensity factor 

increases. The opposite is true for the coating whose stiffness decreases in the depth 

direction. 
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Table 5.8: Stress intensity factors for semi-circular stamp, b/R2 = 0.025, R2/h3 = 20 

77 = 0.0 77 = 0.1 77 = 0.3 77 = 0.5 
a = +0.5 
ß = -0.5 

a = +0.4909 
ß = -0.4909 

a = +0.4728 
ß = -0.4728 

a = +0.4548 
ß = -0.4548 

r3 
*i(0) fci(0) fei(0) fci(0) 

{^V+«)/R2 {^V+«)/R2 (/i3o61+a)/i?2 (M30&1+a)/Ä2 

8 
2 
1 

1/2 
1/8 

0.9336 
0.7914 
0.7143 
0.6342 
0.4725 

0.9411 
0.7847 
0.7010 
0.6157 
0.4501 

0.9528 
0.7688 
0.6729 
0.5783 
0.4066 

0.9603 
0.7500 
0.6432 
0.5408 
0.3653 

Table 5.9: Stress intensity factors for semi-circular stamp, b/R2 = 0.05, R2/h3 = 20 

77 = 0.0 77 = 0.1 77 = 0.3 77 = 0.5 
a = +0.5 
/? = -0.5 

a = +0.4909 
ß = -0.4909 

a = +0.4728 
ß = -0.4728 

a = +0.4548 
ß = -0.4548 

r3 
fti(0) *i(0) fci(0) fci(0) 

(/a3o61+Q)/Ä2 (ß30V+«)/R2 (^30&1+tt)/Ä2 (//30&1+a)/Ä2 

8 
2 
1 

1/2 
1/8 

1.0961 
0.8438 
0.7143 
0.5897 
0.3761 

1.1096 
0.8367 
0.7010 
0.5739 
0.3633 

1.1336 
0.8201 
0.6729 
0.5415 
0.3374 

1.1533 
0.8005 
0.6432 
0.5086 
0.3116 
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Figure 5.22: Stress distribution on the surface of an FGM coating loaded by a rigid 
semi-circular stamp for various values of the stiffness ratio, T3 = AM/A^O, b/R2 = 0.01, 
R2/h3 = 20, 77 = 0.0. 
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Q=r\P 

Figure 5.39: Geometry of the cylindrical stamp problem 

5.4    The Cylindrical Stamp 

The cylindrical stamp problem is described in Fig. 5.39. Again, for small values of 

b/R2 and a/R2 we can approximate the surface of the cylindrical stamp by a parabola. 

Therefore, the displacement in y direction and its derivative become 

V3(x,0) = ~VZ0 + 
X 

2Ä2' 

dx 
v3(x,0) 

X 

(5.119) 

(5.120) 

Letting 

(?zyy(t,0)   =   -p(t),        aSxy(t,0) = -T]p{t),        -a<t<b, 

a3yy{t,0)   =   aZxy{t,0) = 0 t<a,t>b, (5.121) 

and using the relations (4.17)-(4.23) integral equation (4.3) and the equilibrium equa- 

tion (4.12) become 

Ap (x) + 
TV t — X 

+ k31(t,x) + rjk32{t,x) 

f  p{t)dt = P, 
J —a 

p{t)dt = /3(ar), (5.122) 

(5.123) 
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where 

A   =   o;377, (5.124) 

h{x)   =   A3^, (5.125) 

A3   =   ^-, (5-126) 
I + K3 

uz   =   ^izi. (5.127) 
«3 + 1 

In order to solve the integral equation the limits of integration have to be normalized 

from (—a,b) to (—1,1). Now setting 

t   =   t*R2, (5.128) 

x   =   x*R2, (5.129) 

b   =   b*R2, (5.130) 

a   =   a*R2, (5.131) 

p(t)   =   p*(t*), (5.132) 

*3i(*,a0   =   ^-Ki(t*^*), (5-133) R ■2 

M*,*)   =   ^(f,x*), (5.134) 
-»-2 

/s(*)   =   /3OO, (5-135) 

(5.122) and (5.123) can be written as 

Ap*(x*) + -[ p£Ldt* + ±[ [*;1(**,a;*) + ^(f,x*)]p'(o^ = /3(^). 
7T  ,/_a»  t    — X 7T ,/-a* 

(5.136) 

f   p*{t*)dt* = L. (5.137) 
7 -a* K2 
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Further normalizing the integration limits from (-a*,b*) to (—1,1) by the following 

change of variables 

t* = 
b* + a*       b* - a* 

2     5+      2     ' 
-l<s< 1 (5.138) 

X* = 
b* + a*       b* - a* 

2     r+      2     ' 
-1 < r < 1 (5.139) 

p*(0 = 
T*(a)' 

(5.140) 

k31(t ,x ) = 
o* + a* 

(5.141) 

^32 \t  > x  ) = 
2     ~ 

&, + a*  32v >  ;, (5.142) 

/soo = /sW, (5.143) 

the integral equation and the equilibrium equation become 

A<f)(r) + 
7T 

i r 

s — r 
+ k31(s,r) + r)k32{s,r) <j>(s)ds = /3(r), 

where 

i 4        P 
<l>(s)ds= ,       , 

_i o* + a* A3JK2 

/3(r) = (6* + a*)r + (ö*-a*). 

(5.144) 

(5.145) 

(5.146) 

Since there are smooth contacts at both ends x = — a and x = b, from the physics of 

the problem we must require that both a and ß be positive. 

If T) > 0 from equations (4.48) and (4.49) we have 

a   =   N + -,    =>     JV = 0, 
7T 

ß   =   M--,    =>     M = l, 
7T 

and if 77 < 0 from equations (4.56) and (4.57) 

0 
a   =   N--,    =»     7V=1, 

7T 

/?   =   M + -,    =^     M = 0. 
7T 

(5.147) 

(5.148) 

(5.149) 

(5.150) 
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Table 5.10: Values of a and ß for the index, K0 

V a ß 
-0.3 0.5272 0.4728 

-0.1 0.5091 0.4909 

0 0.5000 0.5000 

0.1 0.4909 0.5091 

0.3 0.4728 0.5272 

The index of the integral equation is defined by 

«o = -(a + ß) = -(N + M) = -1. (5.151) 

a and /? then becomes 

77 > 0 :    a = 6/ir, ß = l- 6/n, 

77 = 0:    a = 0.5, ß = 0.5, 

77 < 0 :    a = 1 - 0/TT,    /? = 0/TT, 

where 

0 = arctan 

(5.152) 

(5.153) 

In Table 5.10 some values of the a and ß are given for various values of 77. 

Assuming a solution of the form 

00 

0(5)  = M^c^W, 
0 

«;(*)   =   (1 - a)° (1 + *)', 

(5.154) 

(5.155) 
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defining 

J(s)     =    w(s)Y,CnPia'ß)(s), 

P*     = 

C"D   

P 

^30-^2 
C-n. 

/ P* 
b* 

a   = 

x   = 

fpi 

x 

(5.156) 

(5.157) 

(5.158) 

(5.159) 

(5.160) 

(5.161) 

and Using the orthogonality of the Jacobi polynomials, the equilibrium equation 

(5.145) becomes 

K3 + 1 
CQOQ 

b + a 

where, from (A.8) 

2rca(l — a) 
sm7ra 

Considering the property of Jacobi Polynomials (A.6), letting 

1Ctn(r) = 
1   ^ 
IX -1 

and truncating the series at N — 1, (5.144) can be written as 

N-l 

J^Cn 
Sin7TQ 

-Pt-:'-ß\r) + K3n(r) = (r + l)b+(r- l)o. 

Since K,Q = —1, the consistency condition becomes 

-1 
f(r)~ 

-K -1 
hi(s,r) +r)k32{s,r) <Ks) 

dr 
w(r) 

= 0, 

(5.162) 

(5.163) 

hi(s,r) +Ä(s,rj\ w(s)P^\s)ds, (5.164) 

(5.165) 

(5.166) 
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From equation (5.144) it may be observed that 

/s(r) 

A</>(r) 

E< 

7T -1  L 

hi{s,r) + r}kZ2{s,r)  <f>(s)ds 

IX s — r 
dr 

AHr)Pt,{r).lf_jJ^lds 

-«0 

siri7ro; 
Y,cnp7 

(-a-ß) 
n—Ko (0- (5.167) 

Integrating (5.167) from —1 to 1 and using the orthogonality we find 

oo ri 
'-1 

2-K0 (s)ds 

dr 
w(r) 

1   p(-a-/3) 
rn+l 

sin7ra w(s) 
= 0. (5.168) 

Therefore the consistency condition is automatically satisfied. 

In (5.165) we have N + 2 unknowns ( c0,Ci, ...,Cjv_i,a,&). An additional equation 

can be obtained from the consistency condition( see [46]). Since equation (5.165) is 

satisfied for TV + 1 values of Tj, an equation corresponding to one of the r/s can be 

used to determine b. We first express equation (5.165) in the following form 

F(rj) - fa + 1)0 = fa - l)o       j = 1../V + 1, (5.169) 

where 

JV-l 

^•) = E< <^pti'~ß)M+'c*»M sm7ra 
j = l..N + l. (5.170) 

The collocation points are obtained from 

Pti1'ß-1\rj) = 0, j = l..N + l. (5.171) 
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The system of equations may then be expressed as 

F0(n) 

F0{r2) 

^-i(n) 

FN-i{r2) 

- (rx + 1) 

- (r2 + 1) 

Co 

Ci 

(ri - 1) 

(T2 ~ 1) 

> a. 

F0{rN)     .     FN-i(rN)       -(rN + l) cN-i {rN ~ 1) 

F0(rAT+i)    •   FN-i(rN+1)   - (rjv+1 + 1) b (rN+1-l) 

(5.172) 

Equation (5.172) can be solved by using a suitable iterative technique. In the itera- 

tive procedure, we guess a first, then calculate the iV+1 unknowns ( c0,Ci,..., CJV-I, b). 

With the calculated b and CQ we can determine the new a by using the equilibrium 

equation (5.162), as follows: 

_      KT +1     f 
o = 

c06>o 
(5.173) 

Iteration continuous until we have the same old and new a. Once a and b are obtained, 

the dimensionless load P* can be calculated for a given value of the contact length 

(a* + b*) as 

P* = 
P a* + b* 

A^o-fi^      V a + b 

Similarly, the ends of the contact length and cn's can be found from 

a*   =   a\/P*, 

b*   =   bVP*, 

C zzz.      C   \/ P* ^n     —     *-TI v -1 
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From (5.132) and (5.140),the nondimensional contact stresses can then be obtained 

as 

<T3yy(x*,0) _o{x*) 

^30 M30 1 + K3 
-w (r)J2^Pna'ß)(^ (5.178) 

where 

r = 
2x* -b* + a* 

b* + a* 

Defining 

A3 
axx(x*,0) = —ij){r) 

the in-plane stresses, a3xx (x*,0) can be found by using equation (4.74): 

0-311 (x*, 0) = a (x*) H / 
K   J-a* 

p£±-Jt* - - f   [k*i2 (f, x*) + Vk*41 (f, x*)] a (t*) dt* 
t* - X* 7T J_a, 

Using equations (5.132) and (5.140) we find 

<73xx(x*,0) = 

Therefore, 

A, '        ,     277  fl (j> (s) _      2   r 
7T y_! s-r 1X J_x 

hi (s, r) + 77/C41 (s, r)   (j) (s) ds 

277  f1 <i>(s) 
$ (r) = -(j) (r) - — /    :^^dt ■ 

IT 7_i s-r 
- /     h2(s,r) + 77&41 (s, r)   ^ (s) ds 

and the nondimensional in-plane streses a3xx (x*,0) becomes 

a^ (**, 0) =      2     ^      _ 
J"30 «3 + 1 

Figure 5.40-5.42 give the stress distribution and the load versus contact length 

curves of an FGM coating loaded by a cylindrical stamp for various values of the 

stiffness ratio, T3 = 1x4/ßzo in the case of no friction and (b + a)/i?2 = 0.01,0.03,0.05, 

respectively. The contact pressure ayy is bounded at both ends of the stamp x = a, 

x = b. The stress ayy is symmetic and is greater for the stiffening coating T3 = 7 
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than for the softening coating T3 = 1/7. It is observed that the in-plane stress 

oxx at both ends of the stamp are tensile for the stiffening FGM coating, zero for 

the homogeneous coating and compressive for the softening FGM coating. The load 

versus contact length relation for the homogeneous coating is parabolic. For the same 

applied load the contact length increases as T3 decreases. Also the contact stresses 

increase as contact length increases or the radius of the stamp decreses. 

Figure 5.43-5.55 give the stress distribution and the load versus contact length 

curves of an FGM coating loaded by a cylindrical stamp for various values of the 

stiffness ratio, T3 = ^4/^30 and coefficent of friction 77 = 0.1,0.3,0.5. The stress ayy 

is not symmetric anymore but slanted or concentrated towards the trailing edge of 

the contact region. For the same contact length, ayy on the surface of the stiffening 

coating is always greater than ayy on the surface of the softening coating. Note that 

the maximum tensile stress axx occur at the trailing edge of the contact area. When 

we compare the magnitudes of axx at x = b we conclude that they are greater for the 

stiffening coating ( e.g. T3 = 7) than for the softening coating( e.g. T3 — 1/7). For 

the homogeneous case the axx stresses lies between the stiffening and the softening 

cases. Also as we increase the load the contact length increases and in return the 

contact stresses increase as well. This is also true if we decrease the radius of the 

cylindrical stamp, R2. 

Next we investigate the behaviour of the contact stresses as we fix the stiffness 

ratio T3 and vary the coefficient of friction r)(see Figures 5.54 and 5.55). For the 

stiffening coating in Figure 5.54, as we increase the coefficient of friction 77, the in- 

plane stress oxx at the trailing edge x — b increases sharply. This a big concern 

from the point of view of the fretting mechanics of bolted joints used in aircraft and 

other structures. The peak stress at the trailing edge would serve as a crack initiator. 

And we can easily observe that the initial crack growth direction from the surface is 
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perpendicular to the surface. That is because when maximum tensile axx occur at the 

trailing edge the other two components of the stress are zero. There is no significant 

change in ayy other than the contact zone are shifted towards to the trailing edge as 

r\ increases. Finally there is almost no change inthe load versus contact length curves 

as we increase 77. 

Although, the effect of friction on the trends of the contact stresses at the surface 

of the softening coating in Figure 5.55 are almost the same as the stiffening one, but 

the magnitude of these stresses are considerably lower. And in some cases for T3 < 1, 

there is no in-plane tensile oxx. 

The influence of the parameter xz on the contact stresses is shown in Figures 5.56 

and 5.57. And the effect of the thickness of the FGM coating on the contact stresses 

is depicted in Figures 5.58 and 5.59. 
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Figure 5.40: Stress distribution on the surface of an FGM coating loaded by a rigid 
cylindrical stamp for various values of the stiffness ratio, T3 = /J-i/fao, (b + o)/R2 — 
0.01, R2/h = 100, 77 = 0.0. 
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Chapter 6 

Contact Problems for two 

Deformable Solids 

6.1    Contacting Solids with Positive Curvatures 

In the load-transfer components shown in Fig. 1.2, it will be assumed that the con- 

tacting solids locally have shallow curvatures (that is, the contact zone size (b + a) is 

"small" compared to Ri and R2). Thus, in formulating the problem one may make 

the standard Hertzian assumption to the effect that the Green's functions for the 

concentrated surface tractions in a cylindrical medium may be approximated by that 

of a half plane. The contacting solids consist of dissimilar homogeneous materials 

coated by graded elastic layers of known thickness. Locally the solids will be rep- 

resented by circular cylinders with positive/negative (Fig. 1.2a) or positive/positive 

(Fig.1.2b) curvatures. The problem will be considered with or without friction. The 

main calculated quantities will again be the contact stresses and the load versus the 

contact zone size curves. 

The general equations of the surface displacement derivatives for the upper and 
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lower media may be written as 

1   f 
(jJzT]p{x) + -   / 

^ J-a 

(J2r)p(x) + - 
7T 

1     f° 
-uzp{x) + - / 

7T J-a 

1     fb 

-U)2P{X) + ~ 
K J-a 

t — X 

1 
t — X 

_n_ 
t — X 

V 
t — X 

+ k3i(t,x) + t]k32(t,x) 

+ kn(t,x) + r)ki2(t,x) 

+ Vhi(t,x) + k42(t,x) 

+ 7]k2i(t,x) + k22(t,x) 

p(t)dt   = h(x), (6.1) 

p(t)dt   = /2(s), (6.2) 

p(t)dt   = 93(x), (6.3) 

p(t)dt   = 92(x), (6.4) 

where 

Mx) 

h{x) 

9z{x) 

92(x) 

A3^3(z,0), 

A2-Ö-V2{X,0), 

d    .    , 
A3^u3(a;,0), 

A2-x-u2(z,0), 

A3 

A2 

w3 

w2 

4//; 30 

«3 + 1 
4//20 

«2 + 1' 
«3-1 

«3 + 1' 
«2-1 

«2 + 1' 

&ii(*,a;) = 

ki2(t,x) = 

k21{t,x) = 

k22{t,x) = 

(«2 + 1) Jo 
4 

/■OO 

/    $n(a)sino!(t — x)da, 
Jo 

(«2 + 

(«2 + 1) Jo 
4 

/■oo 

— /    §i2(a)cosa(t — x)da, 
1) Jo 

/>00 

/    $21 («) sin a(t — x)da, 
Jo 

/•oo 

/    §22{a)cosa{t - x)da, 
(«2 + 1) Jo 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 
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k3l{t,x)   = 
(«3 + 1) Jo 

4 rcc 

$3i (a) sin a(t — x)da, 

$32(a)cos a(t — x)da, 
(«3 + 1) Jo 

4     r00 

A;4i(t,x)   =   --: -T- /    $4i(a)sma(t-x)da, 
(«3 + 1) Jo 

4 f°° 
hl2{t,x)   =   --. -r /    $42(a;)coso;(t- x)da. 

(^3 + 1) Jo 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

By using equations (6.1) and (6.2), the displacement gradients for the upper and for 

the lower media can be expressed as 

d_ 
dx 

d_ 
dx 

v2(x,0)   =   ^r]p(x) + -— / + kn(t,x) + 7]ki2(t,x 
A2 A27T J_a  It — X 

i      r^ r       ~[ 
v3(x,0)   =   %p(a;) + T— /     -- + ksl{t,x)+rjk32(t,x) 

A3 A37T J_a  I     t - X 

p(t)dt, (6.21) 

p{t)d{&.22) 

Subtracting (6.21) from (6.22) we have 

|^,o)-|-2M) = - 
U)2 LOz 

[X2 A3J 
r i 1 1 
— +   

LA2 A3J 

T]P[X) 

n -I-a t~x 
dt 

1     fb 

■ — /    [kn{t,x) + 7]kl2{t,x)]p{t)dt 

[M^ + ^M*. *)]?(*)<**■     (6.23) A37T J_a 

The displacement derivatives are related to the curvatures as follows: 

iLV2{x>0) = ~i' 

Subtracting (6.24) from (6.25) we obtain 

^3(x,0)--,2(o;)0) = -, 

(6.24) 

(6.25) 

(6.26) 
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where 

1   _   1     1 
R         R\     i?2 =  Ä2 (-1) R* 

R*  =  i + x, 
R2 

If we define 

C   = 
Lü3       U>2        «3 — 1        «2 _ 1 C* 

As     A? 4/i; 30 4/4 20 

£>   =     1   |   !  ^ ^3 + 1   |  At2 + 1 

A3     A2       4/x30        4/Z20 

C* 

A*30 
£)* 

M30' 

D*   = 

A* 

(«3- -1) - (ä2- -i)r 

(«3 + 1) 
4 

+ («2 +1) r 

c («3 

4 
-1)- - («2~ i)r 

D    («3 + i) + («2 + i)r' 

r = — 
/*2o' 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

and use (6.24)-(6.35), the integral equation (6.23) and the equilibrium equation be- 

comes 

ß3oR*x 

D*R>. 
=   A* rjp (x P(t)t 

t — x K J-a 

i  i rb 

-—— /    [kn(t,x) + r}k12(t,x)]p{t)dt 
VX-Z TV J_a 

~- f   [h!(t,x) + rik32(t,x)]p(t)dt, (6.36) 
D\3 7T J_a 

f J —i 

p(t)dt 

where 

£>A2 

£>A3 

«2 + 1        «3 + 1 
. 4/i20 4/z30 

«2 + 1        «3 + 1 
4/1; >20 4//30 
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4/t2Q     _ 1 «3 + 1 

«2 + i ~ («2 + i)r' 

4/^30 x «2 + lp 
«3 + 1 «3 + 1 

(6.37) 

(6.38) 

(6.39) 



In order to solve the integral equation (6.36) the limits of integration have to be 

normalized. Now setting 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

k32(t,x)   =   ±-k*32(t,x), (6.48) 
■n-2 

equation (6.36) and (6.37) become 

D* IF   V     '        7T J_a. t* - X* 

1   X   r    [kl^Cx^ + vkUt^x^findt* 

t = t*R2, 

x = x*R2, 

b = b*R2, 

a = a*R2, 

Pit) = p*(f), 

kn(t,x) = —kn(t, x), 

k12(t,x) = -zr-k12{t,X), 
til 

k3i{t,x) = Trk3l{t,x), 
X-2 

D\27rJ_a. 

f   [k*3l(t\x*) + r,k;2(t*,x*)}p*(t*)dt\ (6.49) 
J — a" 

1     1     '6* 
D\3 7T J_a. 

f    p*(t*)dt* = ~. (6.50) 
J-a* R-2 

Further normalizing the integration limits from (-a*,b*) to (-1,1) by using the 
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ing change of variables 

t*   = 
b* + a*       6* - a* 

2     5+      2     ' 
-1 < s < 1 

x*   = 
6* + a*       6* - a* 

2     r+      2     ' 
-1 < r < 1 

p*(f)   = 
/^30-R*   ,,  N 

2Z>   *(*)> 

kn(t ,x)   — ^M->> 
K12(t ,X )     = 

2     - 

^ + a-Jfel2(s'r)' 

%l(^    TX    )        = 

6* + >i(5'r)' 

"^32 V^ > % )     = ' i<,o. 
the integral equation and the equilibrium equation become 

-ds Am - i r *> 
* J-l s — r 

1    1   Cb*  p- ~ 1 —— /        kn(s,r)-\-7]kl2(s,r)   <j){s)ds 
L>\2 7T J_a,   I J 

1    1   /*6*  r- - I 
+77T /        ^3i(5, r) + ■qkZ2{s, r)   4>(s)ds 

=   {b* + a*) r + (b* - a*), 

where 

/    (f)(s)ds 

A = A*T) = T) 

a and /? for this problem becomes 

D*P 

b* + a* R*^zoR2' 

(«3-i)-(«2-i)r 
(«3 + i) + («2 + i)r" 

77 > 0 :    a = 6/n, ß=l- 0/TT, 

v = 0:    a = 0.5, ß = 0.5, 

77 < 0 :    a = 1 - 0/TT,    /? = 0/TT, 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

(6.60) 

(6.61) 
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where 

8 = arctan 

Therefore the index of the problem becomes 

K0 = —(ot + ß) — —1. 

Assuming a solution of the form 

oo 

0 

W(S)     =     (l-8)a(l + s)ß, 

defining 

?(s)   =   w(s)Y,cnP^(s), 

p* = 

Cn      — 

P 

X     = 

^30-^2 

6* 
\fp~*' 

a* 

\/P*' 

/p* 

(6.62) 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

(6.67) 

(6.68) 

(6.69) 

(6.70) 

(6.71) 

and using the orthogonality of the Jacobi polynomials, the equilibrium equation (6.59) 

becomes 

4    D* 
c090 ~ K>*' 

where, from (A.8) 

ön = 

b + aR 

27ra(l — a) 
sin7ra; 

(6.72) 

(6.73) 
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Considering the property of Jacobi Polynomials (A.6) and letting 

JCm(r)   =   -f   \kn(s,r) + rik12(s,T)}w(s)P^ß\s)ds, 
ft y_! L J 

(6.74) 

£3„(r) =   - f1 \k31(s,r) + TJk32(s,rj\w(s)P^\S)ds, (6.75) 
ftj-il -I 

after truncating the series at N — 1 (6.58) can be written as 

N-l 

5^cn sin7ro; n—Ko (r) - jrr-Kmir) + jrz-K^ir)   = (r + 1)6 + (r - l)o, 
JL/A2 I/A3 

(6.76) 

The consistency condition is again automatically satisfied. The solution procedur 

identical to that of the cylindrical stamp. 

The nondimensional contact stresses can then be obtained as 

a3yy(x*,0) _ a(x*) R 

e is 

M30 ßzo 2D 
-w 

where 

r = 
2x* -b* + 

b* +a* 

(r)J2cnPia'ß)(r), (6.77) 

(6.78) 

the in-plane stresses, a3xx (x*, 0) can be found by using equation (4.74). as follows: 

a3xx(x*,0)   =   o{x*) + -f   ^-Jt*--f   [^2(r,^) + Ä(i*,a;*)]a(r)df 
ft  J-a* t   — X 7T J_a* 

-p (x*) - *L f   P^-Jf + - f   IK, (**, x*) + Ä (t*, x*)} p (O dt* 
ft  J-a* ^   — x ^ J -a* 

2D* 
■xp(r) (6.79) 

where 

TP (r) = -</> (r) -^L f1 ^-dt +- [   \k22 (s, r) + rjk21 (s, rj\ <j> (s) ds      (6.80) 
ft J-i s -r -K J_x L J 

The nondimensional in-plane streses a3xx (x*, 0) then becomes 

^3xx(z*,0) _  R* 

M30 2D 
;*!>(?) (6.81) 
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Figure 6.1 - 6.3 give the stress distribution and the load versus contact length 

curves for two elastic cylinders with frictional contact 77 = 0.3. The ratio of the radius 

of curvatures R2/R1 is 5 and the stiffness of the surface of the upper cylinder is two 

times that of the lower one and both cylinders have the same coating thickness. The 

normalized contact length is varied between 0.01 to 0.05. The severe contact stresses 

occur when both cylinders have stiffening coatings on the stiff substrate namely T2 = 

T3 = 7, wheras in the case of softening coating on the soft substrate T2 = T3 = 1/7 

the contact stresses are relatively lower. If both cylinders are homogeneous that is 

^2 = r3 = 1 the contact stresses lie between the previous two cases. The stress ayy 

is almost symmetric since a — 0.4909 and ß = 0.5091 for this combination(77 = 0.3). 

It is obvius that if the stiffness of the surface of the upper cylinder goes to infinity or 

becomes rigid a and ß approaches to 0.4728 and 0.5272 respectively. And if we take 

R2/R1 — 0 the results for this case reduces to the rigid cylinder cases of chapter 5. 

For the same combination of material properties we investigate the behaviour of 

the stresses as we increase the coefficient of friction from 0.3 to 0.7 in Figures 6.4 - 

6.6. The effect of increasing friction is to increase the contact stresses. The stress 

oyy is slightly slanted towards the trailing edge of the contact region. Note also that 

the peak value of the in-plane axx stress at the trailing edge increases with increasing 

stiffness T2 and T3. 

Next we fix the stiffness ratio of the lower cylinder T3 at 7, 3, 1/3 and 1/7 and 

vary the stiffness ratio of the upper cylinder T2 in Figures 6.7 - 6.10, respectively. 

Note that the coefficient of friction is 0.3 and /U30//420 = 0.5. The maximum in-plane 

tensile stress axx occurs again at the trailing edge and becomes higher as T2 increases. 

As the stiffness ratio of the lower cylinder decreases the contact stresses also decrease. 

In Figures 6.11 - 6.17 ^30/^20 is taken to be 2. With r] = 0.3, a = 0.5091 and 

ß = 0.4909 this is the opposite of the case when ^30/^20 = 0.5.  The effect of the 
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stiffness ratio on the contact stresses can be seen in Figures 6.11 - 6.13. In These 

figures T2 = T3 and the coefficient of friction is taken to be 0.7. The contact stress 

distribution on the surface of an FGM coating for various values of the stiffness ratio 

of the upper cylinder T2 is given in Figures 6.14 - 6.17. 

6.2    The Case of Negative Curvature 

For the problem described in Figure 1.2 the only difference will be in the right hand 

side and the curvature of the lower half plane (see (6.25)), that is 

Thus the right hand side of the integral equation becomes 

!„(.,„)-J^.0) = £, (6.83) 

where 

1        1      1 

R           it2       R\ 

R* 

~R~2 

R*  =  i + x, 

(6.84) 

Note that R2 < R\. and the range of % is (—1 < x < 0). 

Figures 6.18 - 6.20 give the stress distribution and the load versus contact length 

curves for two elastic cylinders with frictional contact 77 = 0.3 and /i3o//-*2o = 0.5. The 

radius of curvature of the outer cylinder, i?i is 5 times the radius of the inner cylinder 

i?2- The contact stresses are much lower than the configuration seen in Figures 6.1 

- 6.3. The effect of increasing friction on the contact stresses can be seen in Figures 

6.21 - 6.23. 
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0.05, R2/h3 = 100, h2/h3 = 1, 77 = 0.3. 

177 



u 

1\V .^- / 
-0.002 : \ 

/1 

ayy 
-0.004 \ / 

M30 
\ \ \ 

; 

-0.006 \ / 
\ 

i 

-0.01      -0.005 0 0.005        0.01 

x/R2 

0.01 

0.005 

Ai30 

-0.005 

-0.01 

1       i       ■       i i          ' 

1 2       l 3        ' 

/ it 
i2-i3-i 

— r2 = r3=i/7 

// K^<- 

i.i.i. 

0.003 

0.002 

^30-^2 0.001 

-0.01      -0.005 0 0.005        0.01 

x/R2 

i   •   i   '   i i         ' 

r -r -7 

- 
r2_r3-i 

— r2 = r3=i/7 

/ 
/ 

/ 
/ 

/ 
s 

^^ 

.^^^r^Z-     
0        0.01      0.02      0.03      0.04      0.05 

b + a 

Ri 

Figure 6.21: Stress distribution on the surface of an FGM coating for various values of 
the stiffness ratio T2 = ^1/^20, T3 = ^4/^30, /WA^O = °-5> R2/R1 = 0.2, (b+a)/R2 = 
0.01, R2/h5 = 100, h2/h3 = l,r) = 0.7. 

178 



ßZQ 

0.02 

0.04 

0.02   - 

@ xx 

y"30 

-0.02 

-0.04 

1      ■      1      •      1 

i 12-13- / 

/ /    ^*s^ 

12-13-1 

— r2 = r3=i/7 

^N\ - — - —'" *v^/ 

^>* 

- 
\                    jT 

0.003 

0.002 

^30-^2 0.001 

-> r" '■       l        '        i - ''   "      I           ' 

S 

/ 

f / 
r / / 

/ 

- 

 r = r = 7 1 2 — l3 - / 

i2-i3- i 
— r2 = r3=i/7 

- 
/ 

y 

-0.03 -0.02 -0.01     0     0.01    0.02   0.03 

x/R2 

0.01      0.02     0.03     0.04      0.05 

b + a 
Ri 

Figure 6.22: Stress distribution on the surface of an FGM coating for various values of 
the stiffness ratio T2 = ^1/^20, T3 = /X4///30, ^30/^20 = 0.5, R2/R\ = 0.2, (b+a)/R2 = 
0.03, R2/h3 = 100, h2/h3 = l,rj = 0.7. 

179 



uyy 

^30 

-0.02 

-0.04 

-0.06  - 

-0.08 
-0.05 -0.025 0 0.025        0.05 

x/R2 

0.05 

0"rr 

M30    -0.05 

-0.1 

x/R2 

0.003 

0.002 

^30-R2 0001 

-0.05     -0.025 0 0.025       0.05 
0 

I       ■       I        ■       1 
1         i         ' 

r -T -7 1 2       * 3       ' 
i2-i3-1 

— r2 = r3=i/7 

- 

/ 

/ 
/ 

/ 

0        0.01      0.02     0.03     0.04     0.05 

b + a 

Ri 
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Chapter 7 

Conclusions 

In this study, two classes of problems are investigated, namely; the contact problems 

for rigid stamps and the contact problems in elastic load transfer components. The 

main calculated quantities are the contact stresses, the in-plane stress component on 

the surface, the load versus the contact length relations and, where applicable, the 

stress intensity factors. The contact problem of an FGM coating under an elastic/rigid 

stamp is examined first by reducing the governing equations to a system of ordinary 

differential equations by using the Fourier Integral transformation technique. The 

resulting integral equation is solved numerically. The parameters used in this study 

are the non-homogeneity parameters, 73/13 and 72^2, the coefficient of friction, r\ and 

various length parameters. Different stamp profiles are used for the application of the 

load P, and the shear load,Q. The latter is related to the normal load by the Coulomb 

theory for friction. 

After solving the half space problem the Green's functions necessary for the solu- 

tion of the contact problem in load transfer components are obtained. A parametric 

study is performed to find the influence of coefficient of friction, material property 

grading and surface shear modulus of upper/lower or inner/outer cylinders on the 

stress distribution. 
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We may summarize the results obtained from this study as follows: 

1) For the flat stamp, in the case of no friction, stiffening coating gives tensile 

in-plane stress axx&t both ends of the contact whereas for the softening coating axx 

is compressive everywhere along the surface. In the presence of friction, axx is tensile 

for x > a, becomes unbounded for x —> a and is compressive for x < a, x = a being 

the trailing edge of the contact region. The in-plane infinite tensile stress at the 

trailing edge may cause crack initiation. Also as the coefficient of friction increases, 

the magnitude of the in-plane and contact stresses increase. 

2) For the triangular stamp, it is found that axx on the surface is tensile outside 

the contact region for stiffening coating (r3 > 1) and no friction. There is a linear 

relationship between the load versus the contact length for the homogeneous half 

plane. In the presence of friction, axx is tensile for x > b for the stiffening coating 

where b is the trailing end. As the stiffness of the substrate increases with respect 

to the stiffness of coating at the surface (i.e. for T3 > 1), the magnitude of ayy 

increases. As the coefficient of friction increases the peak stress at the trailing edge 

of the contact region also increases. 

3) For the semicircular stamp, the behavior of the contact stresses were similar 

to the triangular stamp case. However, there is a parabolic relationship between the 

load versus the contact length for the homogeneous half plane (i.e., for 73 = 0). When 

the direction of the applied force Q is reversed as in Figure 5.34, singular tensile stress 

axxis generated at the trailing edge of the contact. Stress intensity factors increase 

as the stiffness of the coating increases. 

4) For the cylindrical stamp, it is observed that the positive axx arises at both 

ends of the contact for the stiffening coating(r3 > 0) and no friction. At the trailing 

edge of the contact, axx assumes its maximum value. These stresses are important 

from the fretting mechanics point of view since they can lead to fretting fatigue of 
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the component if a cyclic loading is applied. The stress ayy is again slanted towards 

the trailing edge. As the contact length increases the contact stresses increase in 

a parabolic manner. Also an increase in the coefficient of friction gave rise to the 

higher peak stresses at the trailing edge. The contact stresses are relatively low for 

the softening coating(r3 < 1). 

5) For the two deformable elastic cylinders, the maximum of the tensile stress 

axx occurs at the trailing edge of the contact region when both of the cylinders have 

a stiffening FGM coating . However, these stresses are minimized if both of the 

cylinders have a softening FGM coating(r2 < 1, T3 < 1). Various combinations 

of the properties of cylinders are used and the contact stresses and the load versus 

the contact length relations are presented. The load versus contact length relations 

are approximately parabolic. For the negative radius of curvatures in load transfer 

components such as bearings, the contact stresses are much lower than that for the 

positive radius of curvature case such as gears. The contact stresses show the same 

behavior but are smaller in magnitude. 
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Appendix A 

Some Useful properties of Jacobi 

Polynomials 

For K0 = (-1, 0,1) the following relation can be written (see Tricomi [47], Szegö [48]) 

i r1 w{t)ptß\t)dt 

7T J_x t-X 

=   cotTiaw{x)Pia'ß)(x) 

2a+PT{a)T(n + ß + l)     ( 1 - x v  '   v 'F [n + l,-n-a- ß, 1 - a, ——- 
7iT(n + a + ß + 1) 

-1   <   x < 1,        «(a) > -1,        »(/?) > -1, 

a + /?   =   _«0,        B(a)^(0,l,...)- (A-1) 

By observing that 

PlZ-*\*) =     ''"'"^V (n + 1, -„ + *, 1 - °, ^! ,        (A.2) r(n-K + l)r(l-a 

and substituting K0 = —{a + /?) into (A.2) yields 

/                                    l-x\      T(n + a + ß + l)T(l-a) n(-a-B), ^     ,AO\ 
F   n+l,-n + Kü,l-a,T    =-^ rfr + ft + i)  P"-"ö     (*)■    (A-3) 
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By substituting now (A.3) back into (A.l), we obtain 

1   f1 w(t)Ptß\t)dt 

ß),\ _ ^_K0T(a)T{l - a) ^-g-ß) 

if 
t — X 

COS7TQ: 
=      1 

sinira 

-1    <   x < 1 

-w (x)Pt- x 
IT pr-:rw-    (A-4) 

Note also that 

r»r(i - a) 71 

Sin7TQ! 
(A.5) 

Equation (A.l) further reduces to 

n y_!       (s - r) 

-1   <   r < 1,        »(a) > -1,        &(/3) > -1, 

B 

szmra 

K(a)#(0,l,...,).        (A.6) 

The Orthogonality relation can be written as 

pW'W^'WM^^ 
0 n^j 

ef>ß)   n = j 
j= 0,1,2,..., (A.7) 

where 

}(«./*) =  /   w(t)dt = 
2a+ß+iT (Q, + i) r (^ + 1) 

T(a + ß + 2) 
(A.8) 

0 («./») 
2a+^+ir (j + a + !) r (j + ß + !) 

J (2j + a + /3 + l).7'!rO' + a + /3+l)" 

Rodrigues formula is given as 

w(a,ß) (i) p^a,/?) (i) = _ (y}£_dr   r    (a+n^+n) yfl „ = 0, 1, 2, 

(A.9) 

(A.10) 

w(a,ß) ^ p(*,ß) (Q J_d_ 
2ndt 

w(a+l,ß+l)p(a+l,ß+l) (f)l _ (An) 
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The following recurrence relation is given in [42] 

n(a,ß)     n     p(a,ß) /   x p{a,ß)/   s 

where 

(A.12) 

AM = 2(n + l)(a + ß + n+l)  
(a + /3 + 2n + 1) (a + ß + 2n + 2)' 

where 8n is given in (A.8) 
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Appendix B 

Calculation of some useful integrals 

We will examine the evaluation of the following integral 

r1 (z-i)a{i + z)ß, 0   l mi, /    ^ — —dz,        a + ß = l,        -oo < r < oo (B.l) 
J-i z-r 

In the complex plane, since 

za+ß+l 
lim  = oo, 

2-+0O   Z —  ZQ 

we will start with the following contour integral 

j> f(z)dz, (B.2) 

where 

/W = \'-W+fy (B.3) 
{Z - ZQ) (1 - Xz) 

in which 

z->oo [Z — ZQ) (1 — AZ) X 

is finite, and therefore 

''--^^U^'Ml1^. (B.5) _i z — r A->O t/_1 (z — r) (1 — Az) 
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£>Ki> 

Figure B.l: The contour used in evaluating the integral in B.2 

and (z = z0 and z = 1/A) are the singular points of the integral (B.2) within C, C 

being the contour shown in Figure B.l and it is assumed that z0 is outside the cut 

plane [—1,1]. According to Cauchy's theorem on residues , we have 

<j> f (z) dz = 2TTZ Y^ Resf (z) (B.6) 
z=zk 

where 

£/w dz =    f f(z) dz 
Jri+Cel+L1+Ce2+L2+ce3+r2+cR 

=   I l +(f   +/+/   +[++[+{  )f(z)dz. (B.7) 
I Jrx    JCe,     JLI    JCe2    JL2        JT2    JCR J 

Since 

lim(z-l)/(z) = lim (z + l)f(z) = 0, 
Z-+1 Z—> —1 
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from the Jordan's lemma, it can be shown that the contour integrals along C£l, CS2, 

vanishes, i.e, 

Further, since 

we find that 

I    f[z)dz=(f    f{z)dz = 0, (B.8) 
JCV, J Ceo 

\imzf{z) = -\, (B.9) 

I   f(z)dz = ~i. (B.10) 
Jc* A 

Also the line integrals, 

[ f(z)dz = - [ f(z)dz. (B.ll) 

If e -)• 0 and Ä ->• oo from (B.8) (B.10) (B.ll) and (B.7) 

I  f{z)dz+f  f {z) dz = 2m Y, Res + y i- (B.12) 

For the evaluation of the line integrals of equation (B.12), we define 

z + 1   =   Ple
i6\ (B.13) 

z-l   =   P2e
i6\ (B.14) 

where 

Px   =   8 + 1, (B.15) 

P2   =   1-5, (B.16) 

■ o s e Li , 
Oi = i , (B.17) 

o  s e L2 
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02=   < 
IT       S G L\ 

—IT  s e L2 

Using (B.15)-(B.18) the line integrals on L\ and L2 becomes 

'1 „aj* 

JL, 7-I (s ~ zo) (1 - As) 

/  f(z)dz 
JL2 

1      fifie-™ 
ds. 

h     (s - zo) (1 - A5) 

From (B.19) and (B.20) it can be shown that 

f(z)dz+      f (z) dz = 2i sinna /   -. VT; rrds. 
Ll h2 J-i (S - z0) (1 - As) 

Residues at z = z0 and z = 1/A can be calculated as 

{zo - l)a (1 + zo)ß 

&*    f(z)\z=z  = 

Res    f(z)\e=i 

(1 - Azo) 

l(l-X)a(l + \y 
A        1 — Az0 

Using (B.12), (B.21), (B.22), (B.23), It can be shown that 

7_ x   (s - z0) (1 - As) 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

+2m 

(1 - Az0) 

l_Az0-(l-A)Q(l + A)^' 

A (1 - Az0) 

Taking the limit of equation (B.24) as A —>■ 0 it may easily be shown that 

1 (1 " a)° (1 + ^ 

(B.24) 

/_ (s - z0) 
-ds 

7T 

simra 
(zo - l)a (1 + z0f + a - ß - zo 

In order to evaluate the following integral on line L = [—1,1] , 

*{s) 
-ds, 

s — r 

a + ß = l. 

(B.25) 

(B.26) 
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where 

tt/l   -L+\ß 4>(t) = (i-tr(i+t) 

we consider the following sectionally holomorphic function 

y '      2xi JL t - z 

where 

$(z) 
1 

2zsin7ra; - 
(z - l)a (z + l)ß + a - ß - z 

From the Plemelj formulas we have 

1   f 4>(8) 
iLs-r 

$+ (r) + $- (r)    =    — / 
m JL 

ds. 

In order to find $+ (r) and $   (r) first, observe that 

z-l)a{z + l)ß       =   (1 - r)a (r + 1)V 

[z-l)a(z + l \ß (1 - r)Q (r + 1)V 

So that $+ (r) and $   (r) becomes 

1 
$+ r 

$" (r) = 

2zsin7ro; . 
(1 - r)a (r + If ema - r + a - ß 

1 
(1 - r)a (r + l)ß e-*ia - r + a - ß 

2i sin 7ra 

Therefore using (B.31) , (B.34), and (B.35) for a + ß = 1 we obtained 

/ 

[l-s)a(l + sY 
s — r 

ds 
7T 

sm7ro; 
(1 - r)Q (r + l)ß cos -not — r + a — ß 

(B.27) 

(B.28) 

(B.29) 

(B.30) 

(B.31) 

(B.32) 

(B.33) 

(B.34) 

(B.35) 

-1 < r < 1. 

(B.36) 
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One may easily evaluate the integral for r > 1 and r < — 1 by using equation (B.25) 

as follows: 

[l-s)a{l + s)P 7T 
 as = —— 

s — r sm7ra; L 

(l-S)a(l + sf ^ 7T 
 as = —— 

s — r sm7ra; 

(r - 1)Q (r + if - r + a - ß 

-(l-r)a(-l-rf-r + a-ß 

r>l,   (B.37) 

r < -1. 

(B.38) 

In summary, for a > 0, ß > 0 and a + ß — 1 

[- (-r + 1)Q (-r - I)'3 - r + a - ß] ,     -oo < r < -1, 
1   (1-S)Q(1 + S)^  _        7T 

i s — r sm7ro; 
(1 - r)a (1 + rf cosna — r + a - ß 

(r - l)a (r + if - r + a - ß 

-1 < r < 1, 

1 < r < oo. 

(B.39) 

A similar analysis can be carried out for the evaluation of for a > 0, ß < 0 and 

a + ß = 0 

1   (1-S)a(l + Sf 7T 

-r + If (-r - If - l] , -oo<r<-l, 

_i s — r sm7ro; 
(l-r)Q(l + r)/3cos7rQ!-l 

(r - 1)Q (r + 1)^ - 1 

-1 < r < 1, 

1 < r < oo, 

(B.40) 

and for a < 0, /? < 0 and <* + /?=-! 

/_; 

1   (1-S)a(l + Sf 7T 

[-(-r + l)a(-r-lf],      -oo<r<-l, 

s — r Sin7TQ! 
(1 — r)a (1 4- rf cos 7ro; 

(r - l)a (r + 1) 

-1 <r < 1, 

1 < r < oo. 

(B.41) 
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Evaluation of the following integral 

-1 Pt'ß] (t) w (t) dt 
Ln(x) 

-l t — x 
-co < X < CO, 

where 

W(t) = (i - tr (i+t)p, 

will now be examined. 

Multiplying (B.42) with P^ß) (x), we have 

** P#f) (*) Ptß) (t) w (t) dt P^ß)(x)Ln(x) = J^ 

also we can write the following relation 

P™ (x) Ln+1 (x) 

t — x 

1   p(a,/3) t„\ D(a,ß) Pr" (X) P£P> (t) W (t) dt 
t — X 

If we subtract (B.45) from (B.44) we have 

P£f (x) Ln (x) - PM (x) Ln+l (x) 
1   w(t) 

-i (t ~ x) 

Using the following relation 

P&f> (x) Ln (x) - P^ (x) Ln+1 (x) 
1  w (t) .      , K ^ P[a'ß) (x )pf'ß) (t K 

,    y \(x -t)-?->   -± !HL-^ —dt 
hk 

n     n(<*,ß) 

by observing that 

£pt>ß)(t)PJc
a'ß\t)w(t)dt = 90, 

(B.42) 

(B.43) 

(B.44) 

(B.45) 

P&P (*) ^ (*) - P^ß) (x) PÄf) (*)1 dt.        (BAG) 

= -T1 E ^ir^ / p°(a,/?) w ^^(t) di (B-47) 

(B.48) 
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we obtain 

&f> (x) Ln (x) - Pia>ß) (x) Ln+l (t x "71 *\o 
a,/?) (*) 

An /l0 
#(b (B.49) 

or 

P&f (*) Ln (*) - P„Q^ (a:) W (x) = 

Finally the recurrence relation is 

Ln+l(x) 
Pt'ß) (x) 

where for a > 0, ß > 0 and a + ß - 1 

/in $0 

(B.50) 

«ww^S (B.51) 

™ - L^'I. (s) ds _   f1 (l-s)a(l + s) 
s — r 

7T 

Sin7TQ! 

- (-7- + 1)Q (-r - If - r + a - ß,     -00 < r <-1, 

(l-r)a(l + r)ßcos7ra-r + a-ß,   -1< r < 1,    (B.52) 

(r-l)a(r + lf-r + a-/3, 1< r < 00, 

and for a > 0, /3 < 0 and a + ß = 0, 

(-r + l)a(-r-l)"-l,        -oo<r<-l, 

(l-r)Q(l + r)/3cos7ra-l,   -1< r < 1, (B-53) 

(r - 1)Q (r + if - 1, Kr<oo, 

and for a < 0, /? < 0 and a + ß = -1, 

_(_r + l)Q(_r_l)/5)     -oo<r<-l, 

Lo(0 = ^fir<(   (l-r)a(l + r)^cos7ra,   -1< r < 1, (B.54) 

U (r) = 
7T 

Sin7TO! 

7T 

Sin7TQi 

(r - 1)Q (r + 1)* 1 < r < 00. 
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Appendix C 

The Contact Problem for 

Homogeneous Solids 

C.l    Formulation of the problem 

For the plane contact problem under consideration shown in Figure C.l the Hooke's 

law can be written as 

<rzx(x,y)   = 

Vyy(x,y)     = 

Mo 
K-l 

Mo 
K-l 

, — oo < y < 0 

axy(x,y)   =   no 
du     dv 
dy     dx 

(C.l) 

(C.2) 

(C.3) 

where K = 3 - Au for plane strain and K = (3 - u)/(l + v) for the generalized plane 

stress conditions. The governing equations are the equilibrium equations which in 

the absence of body forces can be written as 

daxx     daxy   _ 
dx dy 

v®xy       uGyy     _    Q 

dx        dy 
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Substituting stresses from equations (C.1)-(C3) into equations of equilibrium (C.4)- 

(C.5), we obtain the Navier's equations as follows 

.       „S<92M     ,       ^d2u     n d2v n ,„ _N (« + Ds? + (*- V + 2ä^ = °' (a6) 

/       H x <92u     /       „ \ d2<ü     n d2u n ,~ „, 

(K + 1)v + (K_1fe + 2ä^ = a (C'?) 

To solve the Navier's equations we define the Fourier transforms of the two displace- 

ment components, u{x,y) and v(x,y), as 

/oo 

u(x,y)e-iaxdx, (C.8) 
■oo 
/oo 

^^e-^cb. (C.9) 
•oo 

The functions u(x,y) and v(x,y) are given by the following inverse transforms; 

1   r°° 
u(x,y)   =   — y     F(a,y)eM»da> (CIO) 

1    Z"00 

W(a;'y)   =   2W     GCa.yJe—da. (C.ll) 

Substituting (C.lO)-(C.ll) into (C.6)-(C7) yields the following system of differential 

equations with constant coefficients. 

(K-l)^r-{K + l)a2F + 2m^-   =   0, (C.12) 
dy dy 

(K + l)^-(K-l)a2G + 2ia^-   =   0. (C.13) 
dyz ay 

Assuming a solution of the form 

F(a,y)   =   A(a)em", (C.14) 

G(a,y)   =   B{a)emv, (C.15) 

we obtain the solution of (C.12) and (C.13) as 

F(a,y)   =   [A1(a)+A2(a)y]eM« + [A3(a)+A4(a)y}e-Wy, (C.16) 

G(a,y)   =   [B1(a)+B2(a)y]e^y + [B3(a) + B4(a)y)e-^y, (C.17) 
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where rrij, (j = 1,... ,4) satisfies the following characteristic equation 

m2 - a2)2 = 0, (C.18) 

yielding 

mi 

m3 

m2 = |a|, 

7714 = ~~\a\ 

(C.19) 

(C.20) 

Since the displacements have to be bounded as y -» —oo, we require A$ = A4 = 53 

u?4 = 0. Therefore equations (C.16) and (C.17) become 

F(a,y)   =   [Al(a)+A2(a)y]e^y, 

G(a,y)   =   [B1(a)+B2(a)y}e^y. 

(C.21) 

(C.22) 

The functions A,-(a), Bj(a) 0 = 1, 2) are unknown functions and are not independent. 

The relationship between them can be found by using equation (C.12) or (C.13): 

B1 (a)   =   -i—Ai (a) + -KA2 (a), 
a a 

B2 {a)   =   -i—A2 (a). 
a 

The equations (C.21) and (C.22) then become 

F(a,y)   =   [^1(a) + A2(o;)y]el^, 

G(a,y)   = i—Ax (a) + -(-\a\y + «) A2 (a) 
a a 

\<*\y 

Now substituting (CIO) and (C.ll) into (C.2) and (C.3) we have 

vyy(x,y)   = _/fo_J_ 
K-127T 

(3-K)(ia)F + (K + l) 
dy, 

eiaxda, 

1    f° 
&xy(x,y)  =  Mo^: / 

dF 
dy 

+ (ia)G eiaxda. 

(C.23) 

(C.24) 

(C.25) 

(C.26) 

(C.27) 

(C.28) 
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Taking the inverse transform of (C.27) and (C.28) we find 

dG 
(3 - K)(ia)F(a, j/) + (« + l)y (a, y) 

dF 
ßO     j-oo 

1     '«> 

ayy(t,y)e-iatdt,  (C.29) 

Ka,y) + (ia)G(a,y)   = 
oy ßo J -oo 

Defining the contact stresses 

(Tyy(X,0) - <J(X), 

axy(x,0)   =   T(X), 

axy(t,y)e-iatdt.       (C.30) 

(C.31) 

(C.32) 

the Fourier transforms of the tractions on the boundary become 

/oo 

a{t)e-iatdt, 
■00 

/oo 

r(t)t 
■oo 

e~iatdt, 

(C.33) 

(C.34) 

and substituting F and (? from (C.25) and (C.26) into equations (C.29) and (C.30) 

we have 

\a\ 

2 Id (K-1) 

(C.35) 

Thus, the unknowns A\ (a) and A21 (a) become 

A,(a)   = 

a 
P(a)     iy-riK + 1) 

a 
/i0A 

«-1 

^2 (a) 
ß0A 

Q{a)   -(«-1) 

4/i0 |a| 

-2ia   P(a) 

2 |a|     Q(a) 

(C.36) 

llalp(a) + ^-Q(a), 
2fi0a 
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where 

A = -Aia. (C.38) 

C.2    The displacement gradients on the surface 

Taking the x derivative of equations (C.10) and (C.ll) we have 

iaG(a, y)eiaxda, hmM^) = lim i - 
y-»o      ox y->o 2ir 

=   lim — 
jr-»0 27T 

lim—5  

■oo 
oo 

|a| Al (a) - (- |a| y + K) A2 {a)) e^yemxda{C39) 

1    f°° 
lim— /     iaF(a,y)eiaxda, 
y->o 2-K J_00 

1 
lim — /     [Ax {a) + A2 (a) y] eMyeiaxda. 
y-^o 2ir J_00 

(C.40) 

Substituting (C.36) and (C.37) into (C.39) and (C.40) we obtain 

lim27r—v{x,y)   =     /     Kn{x,y,t)a(t)dt+ /     Ku(x,y,t)r{t)dt,   (C.41) 
V->°        OX J_O0 J-oo 

ß /.oo /-co 
lim27T—ufoy)   =      /     K21(x,y,t)r(t)dt+ /     K22{x,y,t)a{t)dt,   (C.42) 

where 

/*oo r   „   .. i  i        „•„.   i 
el«|ye-ia(t-x)dQ,} fsTii(x,y,t)   =   lim 

. a /c + 1       ia 
1 —  y 

y^bj-oo [ \a\ 4/x0       2^0 . 

K12(x,y,t)   =   lim 
y-»0 

K — 1 Idl U  1_ L_L£ 
4/xo        2/x0 

el«l»e-<«(*-*)rfQ!j 

K2l(x,y,t)   =   Y™J~U^K-^ + ^y)e^e-^da, 

K22(x,y,t)   =   lim 
y->0 

« — 1      My 
4/x0        2//Q 

el«l»e-io!(t-x)dQ!_ 

(C.43) 

(C.44) 

(C.45) 

(C.46) 
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Using 

Using the following relations 

[+°°iMe\°\ve-i°{t-x)da   =       2(t-x) (C47) 

7-oo     « (t - xf + y2 

f+°° e\a\ye-ia(t-X)da    = ^  y<Q^ (C48) 

7-oo                                 (t-x) + y2 

[+Ca iaye^e-^-^da   = ^ ~ x)v" y<0 (C.49) 

[+0° \a\ye^e-ia^da   =   J W ~ x? ~ V*} V < 0.        (a50) 
J-«> [{t-xf + y*]2 

equations (C.41) and (C.42) become 

hm27r— u(x, u)   =   hm —    /      x-—T-J—o{t)dt 
y^o     dx  v ,yj y->o 4/xo    J-oo(t-x)2 + y2 

+ lim ^ f° % -r(t)dt, (C.51) 
v->o  4/i0   J-oo (i - x)2 + y2 

hm27r—u(x,u)   =   hm —  /     -——-^—'—-rltjdt 
y-*>     dx   V    y; »-><>  4/x0   J^ (t -x)2 + y2 

_ lim 1^1    f° ?| a(i)rfi. (C.52) 

2/-J-0- (t — x)2 + y2 t — x' 

lim- ^—--   =   -n6(t-x), (C.54) 
y->o- [t - x)2 + y2 

equations (C.51) and (C.52) become 

27r|-t,M)   =   ^ r^-dt-^r(x), (C.55) 
dx 2/xo   7_oo t-x 2/i0 

2TT—«1,0     =  /     -U-dt + - TRXX. (C.56) 
ax 2/i0  7-00 t-x 2/i0 

Modifying equations (C.55) and (C.56), we find 

-o,r(x) + \ f~ j&dt   =   /(x) (C.57) 

w<r(x) + - r ^-dt   =   g (x) (C.58) 
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where 

/(*)   =   A|U(X,0), (C.59) 

g(x)   =   A^.0), (C.60) 

u,   =   ^, (C.61) 
K + 1 

4/xo 

K+l 
(C.62) 

C.3    The in-plane stress a XX 

Once the contact stresses a (x) and r (a;) are determined we can find the in-plane 

stress, axx (x, 0). The strains in y and z direction can be written as 

1 
eyy   ~~ E 

[ayy - v{axx + azz)], (C.63) 

Czz   =   j= [azz - v{oxx + ayy)]. (C.64) 

Under plane strain conditions (ezz = 0) the stress in z direction becomes 

OZZ = V{axx + (Jyy). (C.65) 

Substituting this stress back into equation (C.63) we have 

em(x, y) = -^^Vyy{x, y) —axx(x, y). (C.66) 

For Plane strain case we have 

3 — K 

E   =   2ß0{l + v). 

Thus, equation (C.66) becomes 

d K + 1 3 — K 
eyy(x, 0) = ä-v(x, 0) = — <Jyy{x, 0) - — axx(x, 0). (C.67) 

ay ößo o/io 
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Substituting —u(x, 0) and -r-v(x, 0) from equations (C.57) and (C.58) into equation 
ox oy 

(C.l) we obtain 

axx(x, 0)    =   ayy(x, 0) + - f° 2f&^dt, (C.68) 

. .      2   Z"00  r{t) 
=   <x) + ~ n J-c 

' —oo 
fOO 

'/  \ I. I 

-dt. 
-00  ^ ^ 
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K  ,\i Horn. Substrate 

Figure C.l: Geometry of flat punch on a homogeneous medium 

C.4    Flat Stamp 

The problem geometry can be seen in Figure C.l.  Using the following tractions on 

the boundary 

cryy{x,0)   =   -p{x),        axy(x,0) = -m>(x),        -a<x<a,        (C.69) 

ayy(x, 0)   =   axy(x, 0) = 0, \x\ > a, (C.70) 

equation (C.57) becomes 

B   (« p(t) ApW + f/Ir^t=Ai"(I'0)- 
where 

A   =   —-TV, K+l 

B   =   -1, 

4yU0 A 
K + l' 

d_ 
dx 

v{x,0)   =   0. 

(C.71) 

(C.72) 

(C.73) 

(C.74) 

(C.75) 
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The equilibrium equation for this profile can be written as 

f p{t)dt = P. (C.76) 
J—a 

In order to solve the integral equation the limits of integration have to be normalized. 

Now setting 

t   =   as, -1 < s < 1, (C.77) 

x   —   ar, -1 < r < 1, (C.78) 

p(t)   =   p*(s). (C.79) 

and substituting (C.77)-(C.79) into (C.71) the integral equation of the problem be- 

comes 

Ap*{r) + l[1P^)± = 0j        _i<r<i. (C.80) 
7T J_x    s-r 

Defining 

p*(s) = 2a0<j>(s), (CM) 

where 

ao = i' (c-82) 

the integral equation (C.80) and the equilibrium equation (C.76) become 

AHr) + ^ f1 *Wl   =   o, -1 < r < 1, (C.83) 
7T J_x   s-r 

f  <f>(s)ds   =   1. (C.84) 

The index of the integral equation is defined by 

Ko = -(a + ß) = -(N + M) = l, (C.85) 
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where a and ß are found to be 

77 > 0 : a = 

77 = 0 : a = 

77 < 0 :    a — 

-1 + 0/TT,  ß = -e/n, 

-0.5, /? = -0.5, 

-0/TT, /3 = -l + ö/7T, 

(C.86) 

0 = arctan 

Now assuming a solution of the form 

K+ 1 

V(K-1) 

</>(*) = J2 CnW(s)P^ß\s), W (S) = (1 - S)° (1 + S)ß , 

(C.87) 

(C.88) 

equation (C.83) may be expressed as 

B   fl w{s)Pt'ß\s)(j)(s)ds 
J2c" Aw{r)PJl

a'ß\r) + - [ 
* J-l s — r 

= 0, -1< r < 1.   (C.89) 

Using the property of Jacobi Polynomials in Appendix (A) equation (A.6), (C.89) 

becomes 

N 

—PtTß\r) 
SinTTÖ 

= 0, (C.90) 

From the orthogonality of the Jacobi polynomials we can see that equation (C.88) 

has only one unknown coefficient CQ. Therefore from equation (C.88) 

4>(s) = c0 (1 - s)a (1 + sf . (C.91) 

c0 has to be determined from the equilibrium equation (C.84). Using the orthogonality 

of Jacobi Polynomials given in equation (A.7), (C.84) becomes 

co0o 
(C.92) 

where (for a + ß = —\) 6Q is given by equation (A.8) 

e0 = 
1   ,A*   2^+1r> + i)r(/? + i) 

w [t) at = — 
1 

77 

r {a + ß + 2) 

sin7ra 
(C.93) 
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Therefore from (C.92) and (C.93) the only nonzero coefficient may be obtained as 

Co 
simra 

It 
(C.94) 

Thus from (C.91) <j> (s) becomes 

sin7ra ,        ,af        ,ß (s) = —-(1-s)   (l + s)p. 
7T 

(C.95) 

Substituting <j> ($) from (C.95) into (C.81) we can find the pressure distribution in 

normalized coordinates as 

p*{s)   =   2a0cj)(s), 

2<7o sin ira 
-K 

(i-sr(i+sY (C.96) 

Or in physical coordinates from (C.69), p(x) becomes 

2<Jo sin na 2a0s^a,_xy,+xy 
7T        \       a)    \       a/ 

(C.97) 

The pressure distribution can be obtained in dimensionless form by using (C.97) and 

(C.69) 

ayy(x,0) _ 2sin7ra: /       x\a /       x\ß 
CTQ 7T       V       a/    \       a) 

(C.98) 

The stress component axx(x, 0) stresses can be found by using equation (C.68). Since 

cryy(x, 0) is zero outside the contact region (i.e, —a < x < a) (C.68) can be written as 

Gxx(x,Q) =  < 

(        .    n.       2   fa axv(t,0) , 
avv(x, 0) + — /    — at   —a<x<a, 

nj-a   t-x 

2   fa axy(t,0) 
(C.99) 

7T J_a     t-X 
dt \x\ > a. 

Defining 

<?xx{x,0) = -2a0q{r) (C.100) 
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and substituting axy(t,0) from (C.69) and using (C.79), (C.84)and (C.95), equation 

(C.99) may be expressed as 

4>{r) + -i /    ^^ds, 
TT J_iS-r 

2V  f
1  <j)(s) 

q(r)= < 

IT J_x s — r 

Substituting </>(r) into (C.101) 

ds, 

-1 < r < 1, 

\r\ > 1, 

(C.101) 

q{r) = 

c0w(r) + —CQL0 (r) 
7T 

2r? 
7T 

c0L0 (r) 

where L0 (?") is given in Appendix (B) equation (B.54) 

-(-r + lH-r-iy3, 

io(r) 
7T 

sm7ra 
(1 - r)Q (1 + r)/3cos7ra;, 

[ (r-l)Q(r + l)^, 

-1 < r < 1, 

|r| > 1, 

—oo < r < —1, 

-1 < r < 1, 

1 < r < oo. 

(C.102) 

C.4.1    Stress intensity factors 

Mode I stress intensity factors at the ends of the stamp for a homogeneous medium 

can be defined as 

2CT0 M°) 

&i (-a) 

lim 
p{x) 

x-^a 2@ (a — x)a 

p(x) 

"Co, 

lim 
2a0 

x-*~a 2a (x + a)ß      aß 

Defining the nondimensional stress intensity factors as 

-co- 

(C.103) 

(C.104) 

k\ (a) 
2(7, 

■h (a) = Co, 

— h (-a) = c0, 
Z<T0 
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Figure C.2: Stress distribution under frictional contact, a0 = —- for the homogeneous 
2a 

flat punchproblem 

for the frictionless case a and ß become —1/2 and c0 becomes l/7r, therefore equations 

(C.103) and (C.104) become 

2 P 
hi (a) = hi (—a) = —a0y/a — —7=. 

7T 7rya 
(C.105) 

214 



Rigid Punch      P 

4a K ;/    Q=r\P 
>-*  

/ü   21      :/ v 

K, p. 
Horn. Substrate 

x 

Figure C.3: The Geometry of the triangular punch 

C.5    Triangular Stamp 

The problem geometry can be seen in Figure C.3. Using the following tractions on 

the boundary 

(Tyy(x,0)   =   -p(x),        axy{x:0) = -VP{x),        0<x<b,        (C.106) 

ayy(x,0)   =   axy(x,0)=0, x < 0,    x > b, (C.107) 

equation (C.57) becomes 

Ap(x) + - fbp$-dt = \^-v(x,0), 
ft Jo  t- X ox 

where 

K-l 

d_ 

dx 

A — 
K + l 

B = -1, 

X = 4/x0 

K + l' 

v(x,0) = m. 

(C.108) 

(C.109) 

(C.110) 

(C.lll) 

(C.112) 
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The equilibrium equation for this profile can be written as 

fb 

/ p(t)dt = P. 
Jo 

(C.113) 

In order to solve the integral equation the limits of integration have to be normalized. 

Now setting 

b 
t = 

-   2(S + 1)' 
-1 < s < 1, (C.114) 

X    = =   5(r + D, -1 < r < 1, (C.115) 

p(t) - =   Xmcf) (s). (C.116) 

and substituting (C.114)-(C.116) into (C.108) the integral equation of the problem 

becomes 

B  f1 Hs) 
Acj>{r) + - f 

* J-l 
ds = l. 

s — r 

The index of the integral equation is defined by 

where a and ß is found to be 

7? > 0 :    a = 9/ir, ß = -6/ir, 

77 = 0:    a = 0.5, ß = -0.5, 

T) < 0 :    a = 1 - 0/TT,    /? = -! + 9/ir, 

(C.117) 

(C.118) 

(C.119) 

6 = arctan 

Now assuming a solution of the form 

K+l 

77 («-1) 
(C.120) 

4(8) = J2 CnW(s)P^(s), W (S) = (1 - S)a (1 + 8)P , (C.121) 
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equation (C.117) may be expressed as 

J2c- 7T 7_! s - r 

Using the property of Jacobi Polynomials (A.6), (C.122) becomes 

AT 

E Cn 
1 

sm7ro; 
.p(-«,-fl( 1, 

-1 < r < 1. 

(C.122) 

(C.123) 

In this problem, after the application of a given load, one end of the contact region(i.e. 

b) is unknown. However for a given value of the contact length (i.e., b), equation 

(C.123) gives N + 1 equations for N + 1 unknowns ( c0, C\,..., c/v). 

Expanding right hand side of equation (C.123) into a series of Jacobi polynomials 

p(-a,-ß) ^ we can wrjte fae following equation 

TV 

(C.124) 
in nrrv <    * sm7ra 

Comparing right hand side and left hand side of equation (C.124), we can see that 

we just have one nonzero coefficient 

c0 = sm7ra. (C.125) 

Thus 4> (s) becomes 

(s) = CQW(S) = sin7TQ;(l — s)a (1 + s) (C.126) 

By using (C.114)-(C116) the equilibrium equation (C.113) may be expressed as 

-1 2P 
/    (j> (s) ds = 

Xmb 
(C.127) 

Inserting (j) (s) from equation (C.126) into (C.127) and using the orthogonality of 

Jacobi Polynomials in Appendix (A.7), we have 

2P 
Co#o 

Xmb 
(C.128) 
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ß0m 

Figure C.4:   Stress distribution on the surface of a homogeneous medium under a 
triangular punch for various values of the friction coefficient, 77 

For the frictionless case a = 1/2 and ß — —1/2 and CQ becomes 1, therefore equations 

(C.103) and (C.104) become 

h (0) 4 
*; (o) HoinVb     K+l 

(C.142) 
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Figure C.5:  Stress distribution on the surface of a homogeneous medium under a 
triangular punch for various values of the friction coefficient, r\ 
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Figure C.6: The load versus the contact length for a homogeneous medium under a 
triangular punch for various values of the friction coefficient, r] 
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ßQm 

Figure C.7: The load versus the contact length for a homogeneous medium under a 
triangular punch for various values of the friction coefficient, 77 
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Figure C.8: Geomety of the semi-cirular punch problem for the homogeneous medium 

C.6    The Semi-circular punch 

The problem geometry can be seen in Figure C.8.  Using the following tractions on 

the boundary 

(?yy(x,0)   =   -p(x),        axy(x,0) =-rjp(x),        0 < x < b,        (C.143) 

(Tyy(x,0)   =   crxy(x,0) = 0, x<0,    x>b. (C.144) 

equation (C.57) becomes 

0<x<b, (C.145) 

where 

A K~1 

K+l 

B   =   -1, 

4A<O A   = 
K+l' 

Yxv{x^ = I' 

(C.146) 

(C.147) 

(C.148) 

(C.149) 

224 



and the equilibrium equation becomes 

p(t)dt = P. (C.150) 

In order to solve the integral equation the limits of integration have to be normalized. 

Now setting 

t   =   t*R, (C.151) 

x   =   x*R, (C.152) 

b   =   b*R, (C.153) 

p(t)   =   p'(f), (C.154) 

(C.145) can be written as 

Ap\x") + - f PQdf = A**, (C.155) 
7T Jo     T   — X 

Further normalizing the integration limit from (0,6*) to (-1,1) by the following 

change of variables 

t* = 
b* 

-Ks< 1 (C.156) 

X*     = =    £(r + l), -1 < r < 1 (C.157) 

p*(t*) -- 
b* 

(C.158) 

one obtains 

A4>(r) + - I' ^^ = /(r),        -Kr<l. (C.159) 
7T 7_!   s - r 

where 

f(r) = r + l. 

Now assuming a solution of the form 
oo 

if>{8) = ^2cnw(8)P^(s). (C.160) 
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where 

w{s) = (1 - s)Q(l + s)ß, 

equation (C.159) may be expressed as 

B  f1 w{s)Pt'ß)(s)(f>{s)ds I>" Aw{r)p(a'ß\r) + = f{r),        -Kr<l. 
71 J_i s — r 

(C.161) 

Using the property of Jacobi Polynomials in Appendix (A) equation (A.6), (C.161) 

becomes 
N 

S0» L-p(-'.-0(r) 
Sin7TO! = /('), (C.162) 

where K0 is the index of the problem which is 

K0 = - (a + ß) = 0. 

In this problem, after the application of a given load, one end of the contact length(i.e. 

b*) is unknown. However for a given value of the contact zone (i.e., 6*), equation 

(C.162) gives N + 1 equations for N + 1 unknowns. Expanding right hand side 

of equation (C.162) into a series of Jacobi polynomials P}Ta'~ß' and observing that 

ß = —a, we find 

r + 1 = P[~a'-ß) (r) + (1 + a) P^a^ (r). (C.163) 

Therefore 
N 

smna 
Y,CnPta'-ß\r) = P[-a>-ß) (r) + (1 + a) P^~ß) (r). (C.164) 

Comparing right hand side and left hand side of equation (C.164), we have only two 

nonzero coefficients 

c0   =   (1 + oj)sin7ro;, 

C\   =   sin7ra. 

(C.165) 

(C.166) 
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Therefore, <f> (s) becomes 

(s)   =   w(s)J2cnP^ß)(s), 
71=0 

=   w(s) sinira [1 + 2a + s]. 

Using (C.158) the equilibrium equation (C.150) may be expressed as 

1 4   P 
/u b*2 XR 

Using the orthogonality of the Jacobi Polynomials (C.168) becomes 

(C.167) 

(C.168) 

c0#0 —  JZ2 
1Z. 

b*2 XR' 
(C.169) 

In this case a + ß = 0, and 80 becomes 

e0 = 
1     ,AM     2^^T(a + l)T(ß+l) 

w (t) at = — 
l 

2na 
T{a + ß + 2) 

sm7ra 
(C.170) 

The load versus the contact length relation may be obtained by substituting c0 and 

6Q into equation (C.169) 

p* = JP_ = 2-Ka(l + a)bX2 
HoR K + 1 

Then the pressure distribution, p*(t*) becomes 

A 

(C.171) 

p*(n fcf>(s), 

n=0 ^ ' 
a 

K+l t* 

4^o ,„ fb*-f 
-o           smna a + 

t* 
(C.172) 

K + l        V       t* 

Using equation (C.143) and (C.154) the nondimensional pressure distribution becomes 

ayy(x*,0) _ 

ßo 

4    t Jb*-x*xa 

-o  (   I   sin7ra; 
K + l x* 

x 
a+ — 

b* 
(C.173) 
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The stress axx(x,0) can be found by using equation (C.68).  Since ayy(x,0) is zero 

outside the contact region (i.e 0 < x < b) (C.68) can be written as 

axx(x,0) = {   n   nj} 

2   f 
ayy{x,Q) + - I 

" Jo 

2   fb(TXy(t,0) 
t — X 

2   fbaxy(t,0) 
TT t — X 

dt 

-dt   0 < x < b, 

x$[0,b] 

(C.174) 

Defining 

<7xx{x,0) = -^<i(r), (C.175) 

and substituting axy(t,0) from (C.143) and using (C.154), (C.158)and (C.167), equa- 

tion (C.174) for the region 0 < x < b may be expressed as 

q(r) 

^ ,     2rj  f1 (p(s)dSj 

TT 7-i   s-r 
2T?   r1 <j>(s)ds 

7T 7-1  s-r 
ds, 

-1 < r < 1, 

M > l. 
(C.176) 

Substituting <j>(r) into (C.176) we find 

axx(x,0) _     4 

b* b*ri 
-»WE^W-TE^W 

Mo K + l 
n=0 n=0 

— 7 _, cnLn (r), 
7T       '      ■* 

n=0 

-1 < r < 1, 

|r| > 1, 

(C.177) 

where L0 (r) and Z>i (r) are obtained from appendix B equation (B.51)   and (B.53) 

MO 
7T 

sm7ro; 

-(-r + l)Q(-r- 1)^-1, 

(1 — r)Q (1 + r)ß cos 7TQ; — 1, 

(r - 1)° (r + 1)" - 1, 

L:(r)   =   P^(r)L0(r) + 
27TO; 

sm7ra; 

-co < r < —1, 

-Kr<l,   (C178) 

1 < r < oo, 

(C.179) 
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C.6.1    The Stress intensity factor 

Expressing the pressure distribution in physical coordinates 

P(z)   =   -jb*(j){r), 

the mode I stress intensity factors at the end (x = 0) of the punch for a homogeneous 

medium can be defined as 

^(0)   =   limxap(x), 
i->0 

l 

K+l 

Or in nondimensional form 

ki (0) 

K + l       ^—^ 
n=0 

AfX°b*baasm7ia. (C.181) 

fcl(0)   = 

£c„P^)(-l), 26*     l 

K
 + ln=0 

=   4asin7r°V. (C.182) 
K+l 

For the frictionless case a = 1/2 and ß = -1/2 and , the stress intensity factor 

becomes 

*i (0) = -4TJUOV6, (C.183) 

where, from (C.171) 
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Figure C.9:   Stress distribution on the surface of a homogeneous medium under a 
semi-circular punch for various values of the friction coefficient, r] 
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Figure C.12: The load versus the contact length for a homogeneous medium under a 
semi-circular punch for various values of the friction coefficient, TJ 

233 



Rigid Punch 

Figure C.13: Geomety of the parabolic punch problem for the homogeneous medium 

C.7    Parabolic punch 

The problem geometry can be seen in Figure C.13. Using the following tractions on 

the boundary 

ayy(x,0)   =   -p(x),        <Txy(x, 0) = -r)p(x),        -a < x < b,      (C.185) 

ayy(x,0)   =   axy(x,0) = 0, x < — a,    x > b, (C.186) 

equation (C.57) becomes 

,  , .     B  fb  pit)   ,       , d    .    n, (C.187) 

where 

A 

B 

A 

-V(x,0) 

V, 
K-l 

K+l 

"I, 

4/iQ 

K + l' 
X 

R' 

(C.188) 

(C.189) 

(C.190) 

(C.191) 
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The equilibrium equation for this geometry is 

rb 

I p{t)dt = P. (C.192) 
J — a 

In order to solve the integral equation the limits of integration have to be normalized. 

Now setting 

t = t*R, (C.193) 

x = x*R, (C.194) 

b = b*R, (C.195) 

a = a*R, (C.196) 

p(t) = p'(f), (C197) 

(C.187) and (C.192) can be written as 

Ap*(x*) + - f    ^^-dt* = \x*, (C.198) 
7T J_a, t* - x* 

b* p 

p*{t*)dt* = -. (C.199) 
■a' R 

Further normalizing the integration limits from (—a*,b*) to (—1,1) by using the 

following change of variables 

b* + a*       b*- a* 
'    =        2     S+      2     ' 

-1 < s < 1 (C.200) 

b* + a*       b* - a* 
*                                                  i 

X     =        2     T+      2     ' 
-1 < r < 1 (C.201) 

P*(0   =   ^(s), (C.202) 

one obtains 

Arh(r) 
B rld>(s)ds_ 

M          -1 <r r <r 1. (C.203) 
s — r 
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Also defining 

1 4      P 
<b(s)ds = T—-. 

.!   y J b* + a* XR 

A1   =   —— = ö + a , 

B\   =   —p- = 6  - a , 

(C.204) 

(C.205) 

(C.206) 

(C.203) becomes 

M{r) + ~ /    I^~ = f(r), 7T y_! s-r 
-1 < r < 1. (C.207) 

where 

/ (r) = ^r + £x. 

Now assuming a solution of the form 

oo 

0(5) = ^Cn^(S)P^(5), w (s) = (1 - s)Q (1 + sf , (C.208) 
0 

(C.207) becomes 

B   fl w(s)Pt'ß)(s)<P(s)ds~ 
Yl°n Aw{r)P^ß\r) + - f 

n J-i s — r 
f(r),        -Kr<l. 

(C.209) 

Using the property of Jacobi Polynomials given in Appendix A equation (A.6), equa- 

tion (C.209) may be expressed as 

J2C" 2-K°Bp(-a,-ß)() 
1 n—Ko       V ) sin7ro; 

fir) (C.210) 

where KQ is the index of the problem which is 

KQ = - (a + ß) = -1, 
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In this problem, after the application of a given load, the ends of the contact length(i.e. 

b* and a*) is unknown. However since the index of the problem is (K0 = -1) the 

following consistency condition has to be satisfied. 

•1 w (t) 

Since / (t) is a function of (Ax, B\), for a fixed contact length b* + a* = A±, we can 

find B\ from the consistency condition (C.211) as 

J-i        w(t)      J_x     w(t) 

The integral can be evaluated in closed form by expanding A\t + Bi into Jacobi 

Polynomials p\~a~^ (t) as follows 

A1t + B1 = 2AlP[~a>-ß) (t) + [Bi -(ß-a) Ax] Pta>~0) (*), (C.213) 

1 Mt + Bldt   =    I' 2AlPi~a'~ß) {t) di + r {^-(ß-«)MPta'-ß){t)dt 
-i    w(t) J_x w{t) J_x w(t) 

=   [B1-(ß-a)A1]80(-a,-ß) 

IT 

which means that 

[Bx -(ß-a) Ai) -. = 0, (C.214) 
sin 7ra 

B1-(ß-a)A1 = 0. (C.215) 

Therefore 

Bl = {ß-a)Al. (C.216) 

Hence the right hand side of equation (C.210) (i.e. / (r)) is known and if we cut the 

series at n = N , (C.210) becomes 

"■„ r_?_, 
n+l Ys°n —Ptrß)(r) 

sm7ra 
f(r). (C.217) 
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We have N + 1 unknowns (i.e. c0,c1; ...,CAT ) to determine. The easiest way to 

determine these unknowns is to expand both sides of equation (C.210) into series of 

Jacobi Polynomials p\~a~ß> (r), and to compare the coefficients. Thus, using the 

orthogonality relations equation (C.217) becomes 

-7^—Oj (-a, -ß) Cj-_! = Fj,       j = 0,1, ...TV + 1, (C.218) 
Sin7TQ! 

where 

/•l  p(-a,-/?) /^\ p\ p(-a,-ß) /^N 

F>=L -^rf (t) dt=L ^¥r{Ait+Bi) *■     (a219) 

The first equation in (C.218) reads as 

-^—60 (-a, -ß) c_! = F0. (C.220) 
smira 

where 

dt 
(C.221) 

w(ty 

which is the consistency condition (C.211). Therefore we can formally assume that 

c_i = 0. (C.222) 

and the unknown coefficients become 

sm7ro! 
26j(-a,-ßY Ci-i = nof   -      *Fj>        j = l,2,..,JV + l. (C.223) 

TV + 1 unknowns (i.e. co,Ci, ...,c^ ) can then be found by expanding the right hand 

side of equation (C.217) as in equation (C.213). The only nonzero coefficient is 

c0 = Ai sin na = (b* + a*) sin na. (C.224) 

The solution of the problem becomes 

(f>(s) = c0w{s),        w(s) = (l-s)a(l + s)ß, (C.225) 
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In order to find the pressure distribution, substitute (C.225) into (C.202) 

p*(t*) 2 
fJL0 K- 

where 

-cQ(l-sT{l + sY, (C.226) 

Of* — h* -L n* 
s =      , . (C.227) 

b* + a* v 

Using (C.194) and (C.185) we find 

(Tyy(X*,0) = -P*{X*) 

4ß0  smira(b* -x*)a(x* + a*)ß. (C.228) 

Therefore normalized pressure distribution becomes 

aw(:r,0) = —sm™(b*-x')a(x* + a*)ß- (C229) 
fio K+l V J    ^ ' V 

In order to find the relation between b* and a* we use equation (C.216) and substitute 

£1 and AY from (C.205) and (C.206) 

b*-a* = {ß- a) (b* + a*). 

Therefore 

b* = -a*. (C.230) 
a 

The Load displacement relation can be found from the equilibrium equation (C.204) 

fj^^iim <c'231) 

Using the orthogonality of Jacobi Polynomials we have 

Co0o(a,/?) = A^1 (C.232) 
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where, for K0 = — (a + ft) = —1, 

Oo(a,ß)   = 
1     ^     2^+1T(a + l)T(ß + l) 

w (t) at = — 
l 

2-KOiß 

sin na' 

T (a + ß + 2) 

(C.233) 

Therefore the relation between the load and the contact length becomes 

P* = -^ = ^^r (b* + a*Y • (C234) 
//0-R       K +1 

The stress axx{x,0) can be found by using equation (C.68).  Since ayy(x,0) is zero 

outside the contact region ( -a < x < b) (C.68) can be written as 

' om(xfi)+
2-fa-^-dt,   -a<x<b, 

"~<*'°> = l    ,   r*.   ,n " (C-235) 
x £ [—a, b]. 

71 J-a     t~X 

Defining 

A 
<?xx{x,0) = ~2q^: (C.236) 

and substituting axy(t,0) from (C.185) and using (C.192), (C.194)and (C.225), equa- 

tion (C.235) may be expressed as 

277   f1 <f>{s)_ 

r (C.237) 
2V  fl <f>(s) 

q(r) = { 
7T y_i s - 

-1 < r < 1, 

\r\ > 1, 

where 

0(r) = cow(r),        w (r) = (1 - r)a (1 + rf 

Substituting <f> (r) into (C.237) and using (C.236) we have 

axx(x,0) 

Mo 

K + 1 
477 

W (5"J C0 - 
47] 

(« + 1)TT 

(K + 1)TT 

CQI'O (r), 

co-^o 0~) -1 < r < 1, 

Irl > 1, 
(C.238) 
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Figure C.14: Stress distribution on the surface of a homogeneous medium under a 
cylindrical punch for various values of the friction coefficient, 77 

where L0 (r) is calculated in closed form in equation (B.52) as follows 

- (-r + 1)Q (-r - l)ß - r + a - ß,        -00 < r < -1, 

(1 -r)a(l + r)ßcosira-r + a-ß, -1 < r < 1, 

(r-l)a{r + l)ß -r + a- ß, 1< r < 00. 

(C.239) 

Lnfr) 
7T 

sm7ro; 
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Appendix D 

Problems with two deformable 

homogeneous solids 

D.l    The Homogeneous problem 

The mixed boundary value problem depicted in Figure D.l give rise to the singular 

integral equation of the second kind. Consider the following basic formulas for the 

elastic half plane relating the surface tractions to the displacement derivatives 

-u2a2xy(x,V)-^ J™ U-?f^dt   =   AaJ^M), (D.l) 

-co3a,xy(x,0) + - T^f^-dt   =   A3|^3M), (D.2) 
7T J_00      t — X OX 

co2a2yy(x,0)-- ray{t>0)dt   =   X2~u2(x,0), (D.3) 
7T J_00      t — X OX 

u3a3yy(x,0) + ±J™a3x
t
y^x

0)dt   =   A3JU3M), (D.4) 
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Figure D.l: The Geometry of the problem with two deformable homogeneous bodies 

where 

Defining 

0J2 

u3 

A2 

A3 

«2 - 1 

K2 + 1' 
«3 ~ 1 

«3 + 1' 
4/^20 

«2 + 1' 

4/J30 

«3 + 1' 

a2yy(x,0)   =   (T3j,j,(x,0) = a(a;), 

O"2xy(^,0)     =     a2xy(x,0) =T(X), 

(D.l) and (D.2) becomes 

-—-r(a;) 
a{t) 

A3' 

— F A27T t/_00 t - X 

TTA3 y_ 

d* = 

i — re 
dt   = 

^2M), 

^3(z,0), 

(D.5) 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.10) 

(D.ll) 

(D.12) 
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For , relatively small contact regions, the vertical displacement for respectively the 

upper and lower half media may be expressed as 

x2 

v2(x,0)=v20-—, (D.13) 

x2 

Therefore 

dx ' R2 

Subtracting (D.16) from (D.15), we have 

v3{x,0) = -v30 + 7T^- (D-14) ZK2 

|^M)   =   -f, (D.15) 

^-v3(x,0)   =   +-!-. (D.16) 

A^.O)-1-^,0) = |, (D.17) 
az ax it 

where 

I   =   J_ + J- = ^, (D.18) 
R R2     Ri     R2 

R*   =   1 + x, (D-19) 

R2 
X   = 

Ri 

Subtracting (D.12) from (D.ll), and using (D.17) we have 

where 

C = 

D = 

C* = 

D* = 

r = 

D 
7T 

/■oo 

Loot 
°® at 

— X 

x#* 
R2 

C03 to2 c* 
A3 A2 ^30 

1       1 
A3     A2 

D* 

" V 
(«3 -1) - («2- i)r 

4 > 

(«3 + 1) + (K2 + i)r 
4 > 

^30 

M20 

(D.20) 

244 



Or in a more compact form 

-iV^lf^^i (D.21) 

where 

D    («3 +1) + («2 +1) r v     ; 

Applying the following tractions on the boundary 

a2yy(x, 0) = a3yy(x, 0) = a(x) = -p(x),     [ 
>    —a<x<o, 

V2xy(x, 0) = a3xy(x, 0) = r(x) = -m>(x), J (D.23) 

cr2yy(x, 0) = a2xy(x, 0) = 0, x < -a,    x > b, 

(D.21) reduces to 

where 

A   =   A*V, 

B   =   -1. 

Also the equilibrium equation becomes 

f p(t)dt = P. (D.25) 
J — a 
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D.2    Solution of the integral equation 

In order to solve the integral equation (D.24) the limits of integration have to be 

normalized. Now setting 

t = t*R2, (D.26) 

x = x*R2, (D.27) 

b = b*R2, (D.28) 

a = a*R2, (D.29) 

p(t) = p*(0, (D.30) 

(D.24) and (D.25) can be written as 

^^fjWtfÄ, (D.31) 
F   V     '        IX  Ja.    t* - X* D* 

L 
b> P 

pr(F)dt* = - 
—a* 

p*(t*)dt* = —, (D.32) 

where 

A   =   -^-J^*-]]* (D.33) 
(K3 +1) + (K2 +1) r 

B = -1, (D.34) 

R* = l + X, (D-35) 

X = f, (D-36) 

r = ^, (D.37) 

Further normalizing the integration limits from (-a*,b*) to (-1,1) by using the 

following change of variables 

b* + a*       b* - a* 

b* + a*       b* - a* 
x     =   —-—r 

?•«•) = <*£■*(•), 

-Ks< 1 (D.38) 

-1 <T < 1 (D.39) 

(D.40) 
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one obtains 

Mr) + 3 T ^^ = (b* + a*)r+ (b* -a*),        -1< r < 1. 
7T ./_i   5 — r 

Also defining 

, fr + Q      ,»       * i4i   =   -—— = 6 + a , 

k$x   =   —5— = b  -a , 

(D.41) becomes 

5  /-1 ^»(s)ds 

s — r 

where 

f(r) = Alr + B1. 

J2Cn 
7T /_! s - r 

(D.41) 

(D.42) 

(D.43) 

/(r),        -Kr<l. (D.44) 

(D.45) 

Now assuming a solution of the form 

00 

<f>(s) = J2 Cnw(s)pW\s),        w (s) = (1 - s)a (1 + 8)ß , (D.46) 
0 

(D.44) becomes 

/(r),        -l<r<l. 

(D.47) 

Using the property of Jacobi Polynomials given in Appendix A equation (A.6), equa- 

tion (D.47) may be expressed as 

?^lii^p-"",H=/(r)- (D-48) 

where K0 is the index of the problem which is 

K0 = - (a + ß) = -1, 
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The same solution approach can be used as in the case of parabolic punch. Thus the 

solution is 

<f>(s) = cow(s),        w (s) = (1 - s)a (1 + sf , (D.49) 

where 

c0 = Aismira= (b*+ a*)sinira. (D.50) 

In order to find the pressure distribution, substitute (D.49) into (D.40), giving 

w)=^ (2x\-b'+a"). (D.51) F K    '       2D*     \     b* + a*     J v 

Now by using (D.30) and (D.23) we find 

ß30R*        [2x*-b* + a* 
ayy{x ,0)   =   -p {x ) = -^p^c0w I - 

b* + a* 

HsoR*       (2x*-b* + a* 
-c0w 

2D* V      b* + a* 

Since 

/ 2x* - b* + a*\ _      2 _   *s.a / *       *^ 

™ *       b* + a*      /      ft* + a* ^        ^ 

ff^z*, 0) = -^^ sinvra (6* - x*)a {x* + a*)ß , (D.52) 

the normalized pressure distribution becomes 

aw(x,0) = ~ sin TTC* (6* - x*)a (x* + a*)0 . (D.53) 
A*30 D* 

Also, the relation between b* and a* is found to be 

b* = ^a*. (D.54) 
a 

The Load displacement relation can be found from the equilibrium equation (D.32) 

and (D.49) (D.40) 
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Using the orthogonality of Jacobi Polynomials we have 

where 

AD* P 
c060 (a, ß) = (D.56) 

R* (b* + a*) /J-30R2 

0o(a,ß) = ^. (D.57) 
sm7ra 

Therefore the relation between the load and the contact length becomes 

Defining 

p'=^k=^2mß{b'+a')2: (a58) 

°i*(*, o) = -*H£e W , (D.59) 

one may easily calculate q (r) as follows 

f w (r) c0 + f c0L0 (r),    -1< r < 1, 
9 (r) = < 

[ ?c0JL0(r), |r|>l, 

where LQ (r) is calculated in closed form in Appendix B equation (B.52) 

D.2.1    The bearing problems 

For the problems involving negative curvatures the only difference would be in the 

right hand side of the integral equation and the curvature of the lower half plane. 

Thus, 

d     .   nS      x 
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-0.08 

0.1 

0.05   - 

-0.05 

Figure D.2: Stress distribution on the surface of the elastic cylinders for various values 
of the stiffness ratios, T — fj^o/^o, X = R2/R1 — 0.2, 77 = 0.5, (b + a)/i?2 = 0.1 

where 

1 
R 

1        1 

i?2       R\ 

R* 

~ R2 

R*   = =   l + X, 

X   - 
R2 

Ri' 

(D.61) 

(D.62) 

(D.63) 

Note that R2 < R\. and the range of x is (—1 < x < 0) 
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Figure D.3: Stress distribution on the surface of the elastic cylinders for various values 
of the curvature ratios, x = R2/R1, T = //30/V20 = 0.2, 77 = 0.5, (b + a)/i?2 = 0.1 
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Figure D.4: Stress distribution on the surface of the elastic cylinders for various 
values of the coefficient of friction, 77, x — R2/R1 = 0-2, T = A*3O/A*20 = 0-2, rj = 0.5, 
(6 + a)/Ä2 = 0.1 
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Figure D.5: Stress distribution on the surface of the elastic cylinders for various values 
of the stiffness ratios, T = AW/U2O, X = R2/R1 = 0.2, 77 = 0.5, (b + a)/R2 = 0.1 
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Figure D.6: Stress distribution on the surface of the elastic cylinders for various values 
of the curvature ratios, x = -R2/Ä1, T = //30/M20 = °-2> »? = °-5> (b + a)lRz = °-1 
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Figure D.7: Stress distribution on the surface of the elastic cylinders for various 
values of the coefficient of friction, r], x — R2/R1 — 0.2, T = //30/V20 = 0.2, 77 = 0.5, 
(6 + a)/Ä2 = 0.1 
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Appendix E 

Asymptotic Analysis of Kernels 

E.l    Introduction 

In the derivation of the integral equations , an important step is to find the asymptotic 

values of the the infinite integrals in (2.165)-(2.168) and (3.159)-(3.162). There are 

two reasons why we asymptotically expand the infinite integrals as a —> oo. First 

the singular behavior of the integral equation and that of its solution comes from the 

leading order term in the large a expansion of the kernel in integrands (2.165)-(2.168) 

and (3.159)-(3.162). The second reason is that the subsequent terms in the expansion 

facilitate computational efficiency when we numerically solve the singular integral 

equations (4.3) and (4.4). 
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E.2    The Upper half plane 

Before starting to analyse the behaviour of the integrands in equations (2.110)-(2.113) 

assymptotically as a —» oo, the variables used in the integrands can be written as 

,      . ia(n2 — 1) /            v /n i \ 
hn(a,y)   = {yxrA + yiu), (E.l) 

hi2{a,y)  =  ^-(-yirJ + yfo), (E.2) 

h2i(a,y)   -   —r-(jferi + yfo), (E.3) 
^3 

,    ,      . ia(K2 ~ 1) /            \ /-n A\ 
h22(a,y)   = 7 (2/2^4-^2^4), (E.4) 

A3 

where 

yi(a,y)   =   e"22/+ r1e-
/l2(ni_n2)+ni2/+ r3e-ft2(ni-n2)+ni2/, (E.5) 

y2(a,y)   =   a2e
n2y + a1r1e~/l2(ni-n2)+ni2/ - a{r3e~h2^-n2)+Wy, (E.6) 

r2   =   Zu + Zllrie-
h^ni-n^ + z^r3e-h2(-w-n2), (E.7) 

r4   =   z22 + z21rle-
h2{ni-n2)-zEr3e-

h2iw-n2\ (E.8) 

211   =   (B-K2)(ia)ai + (K2 + l)n1, (E.9) 

z12   =   (3-K2)(ia)a2 + (K2 + l)n2, (E.10) 

221   =   aiUi + ia, (E.ll) 

z22   =   a2n2 + ice, (E.12) 

A3 = -(r2r^ + r^r4), (E.13) 

ri   =   -^-(sih + slti), (E.14) 
^2 

r3    =    ^-(52*1-51*2), (E.15) 
^2 
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A2 = -(slt1 + s-1tl), (E.16 

Si   =   i\2aai +A2(K2 + l)niKi +(KI~ l)\a\, (E.17 

s2   =   ?A2ao2 + A2 («2 + 1) n2«i + («i — l) M, (E.18 

<i   =   ai[X2Kini + |Q!|(Ki + l)] + ia[K1X2-(«i-l)]J (E-19 

*2   =   a2[X2«in2 + |a|(K1 + l)] + ia[KiX2-(«l-l)], (E-20 

A2   =   «2 + Kl (A2 (3 _ K2) _ 2) + 1, (E.21 

A2   =   X2——r, (E.22 
«2-1 

(E.23 Mio 
X2     =      : 

Ml 

/   x              1 2ZQ2-   a («2 + 1)^272              „■       i   o fp 94 

a     2nj + 72(3 - K2) 

,v           12ia2 + lal(K2 +1)^272           . _ , 4 ,p oc 
a (a)   = ■ r—,        j-3,4 [hj.Zb 

a     2rij+72(3-K2) 

ni   =   i(-72 + ^722 + 4(a2 + l|a||72|^, (E.26 

n2   =   - f-72-y72+4(a2 + «lall72|^)J , (E.27 

=   ^(-72 + 772
2 + 4(«2-z|a||72|52)), (E.28 

=   ^-72-V/722 + 4(a2-z|a||72|52)), (E.29 

"3 

77.4 

2     =     3_^2 (E30 

2 «2 + 1 

A straightforward asymptotic analysis of the integrands of the infinite integrals 

would start with the asymptotic expansion of the roots (2.44)-(2.47). We start by 

analyzing the roots of the characteristic equation asymptotically. Defining new vari- 

ables 

r = M s = M (E.31) 
|a| 72 
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the first two roots of the characteristic equation (2.40) becomes 

m   =   ^-72 + /yi + 4(a2 + z|a||7#2)) =JfU. (E-32) 

n2   =   i (-72 - v/7| + 4(a2 + ?|a||72|^ = MjV2, (E.33) 

V  «2 + 1 

where 

Ni   =   -sr + y/r2 + 4 + 4i<52r, (E.35) 

As a —>■ oo or r —>■ 0 

AT2   =   -sr - Vr2 + 4 + 4^2r. (E.36) 

nx   -¥   \a\, (E.37) 

n2   -)>   -|a|. (E.38) 

In the expression for yi(a,y) and y2(a, y) given in (E.5) and (E.6), the exponential 

terms becomes 

e«2j/   _^   e-,oe|sf, (E.39) 

e-/i2(ni-n2)+niy    _^    e-\a\(2h2-y) _^. Q (E.40) 

e-/i2(ni-n2)+niy     _^     g-|a|(2/i2-y) _^. Q (E.41) 

since the range of y is 0 < y < h2 in the FGM coating. Therefore, as a —¥ oo, 

yi(a,y)   ->   e-^y, (E.42) 

j/2(a,i/)   -+   a2e-lQ^. (E.43) 

Similarly in the expression for r2 and r4 given in (E.7) and (E.8) the exponential terns 

tends to 

g-Mm-na)   _^   e-2|a|Ä2 ^ 0) (E44) 

e-fc2(iTi-n2)     _j.     e-2\a\h2 _^ Q ^^ 
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Therefore 

r2   ->   zl2, (E.46) 

r4   ->   z22. (E.47) 

Also as a —> oo, A3 tends to 

A3 = - (r2F4 + r2r4) -> A30, (E.48) 

where 

A30 = -(212^22 + z12Z22)- (E.49) 

Therefore using equations (E.42), (E.43), (E.46), (E.47) and (E.48), equations (2.114)- 

(2.117) becomes 

13 

An(a,y)   -►   2^e-^^Ar", (E.50) 
n=0 

13 

71 = 0 

13 

M«,y)   ->   inc-|a|y'EC»rB' (K52) 

I0' n=0 

M<*>y)   -+   e-|a|yX>nrB, (E.53) 
n=0 
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where 

«2 + 1 
4 

s (K2 + 5) 

A   = 4 

-41 

*   -   "I 
A     =       x  5«2-8 

4 32  «2 + l 
1  («2-3) 

^5 

A6 

16   K2 + l 
1   5 K2

2
 - 36 «2 + 57 

"128        («2 +1) 2 

. 1   5«2
3-84«2

2 + 375«2-493 
An   = 3 512 («2 + 1) 

1    (K2 - 3) O22 - 18 K2 + 61) s 
A9 

Aw 

An 

A12   =   - 

. 1     («2 - 3) (K2
4
 - 52 «2

3 + 734 K2
2
 - 3748 «2 + 6217) s 

AL3  ~ 

256       (K2 + l)3 

 1 5 «2
4 - 152 K2

3
 + 1318 K2

2
 - 4324 K2 + 4783 

2048 («2 + I)4 

1 («a- 7) («a - 3) («2
2 - 26 K2 + 85) s 

1024 («2 + I)4 

 5 K2
5
 - 48 «2

4 + 682 «2
3 - 4026 «2

2 + 10479 K2 - 9958 

8192 («2 + l)5 

1  («2 - 3) («2
4 - 52 K2

3
 + 734 K; 

4096 (K2 + l)£ 
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Bo 

Bi 

B2 

B3 

BA 

B* 

B8 

B9 

Bw 

Bn 

B12 

Biz 

K2- I 

4 
S («2 + 1) 

1 
~4 
s 

16 
1  K2 - 3 

~16 K2 + 1 

1  (K2 - 4) S 

64    K2 + 1 

_        1   («2-3) («2-7) 

64        («, + l)2 

B7   =   _LW-l^ + 29). (E55) 
256 (K2 + 1)

2 V       ' 

1    (K2-3)(K2
2
-18/C2 + 61) 

256 («;2 + l)3 

1     (K2
3
 ~ 24 K2

2
 + U7K2 -257). 

Ü24 ^„-i-l^3 1024 (K2 + 1) 

 1    (K2 - 3) («a - 7) {K2
2
 - 26 K2 + 85) 

1024 («2 + l)4 

1    5 (/c2
4 - 40 K2

3
 + 446 K2

2
 - 1844 K2 + 2531) 

4096 (K2 + l)4 

1     («a - 3) (K2
4
 - 52 K2

3
 + 734 K2

2
 - 3748 K2 + 6217) 

~4096 (/c2 + l)5 

1     s (K2
5
 - 60 K2

4
 + 1050 K2

3
 - 7530 /t2

2 + 23535 /c2 - 26610) 

16384 (K2 + 1)
5 
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r «2 + 1 
Co 

c2 = 

c5 = 

C7 =   0 (E.56) 

c9 ■■ 

Cw '■ 

Cu ■ 

Cl2 : 8192 (K2 + 1Y 

Cn =   0 

4 
s {K2 + 1) 

8 
1 

~8 

0 

1   «2-4 
32 K2 + 1 

0 

1   K2
2
 - 12 «2 + 29 

128       (K2 + l)2 

0 

1   re2
3 - 24 «2

2 +147^2-257 

512                (K2 + l)3 

0 

1    K2
4
 - 40 K2

3
 + 446 K2

2
 - 1844 K2 + 2531 

2048                           («a + l)4 

0 

1    AC2
5
 - 60 K2

4
 + 1050 K2

3
 - 7530 K2

2
 + 23535 K2 - - 26610 

263 



(E.57) 

_ 5 («2 + 1) 
Ül   - 8 

£>3     = S 3 16 
1    «2-3 

4 ~     16 «2 + 1 
=        1   («2-4) a 

5 64    «2 + 1 
_    1  («2-3) («a-7) 

6 "   64       (K2 + l)2 

_        1   («22-12«2 + 29)s 
7 ~   "256 («2 + l)2 

1   («2 - 3) («2
2 - 18 «2 + 61) 

8 256 («2 +1)3 

1     («23-24«2
2 + 147«2-257)s 

7)9  ~  'TÖ2Ä («2 + i)3 

1     («2 ~ 3) («2 - 7) («2
2 - 26 «2 + 85) 

10 ~    1024 (K2 + 1)
4 

_ 1    s («2
4 ~ 40 «2

3 + 446 «2
2 - 1844 «2 + 2531) 

11 ~   ~4096 («2 +1)4 

_  1 («2 - 3) («2
4 ~ 52 «2

3 + 734 «2
2 - 3748 «2 + 6217) 

12 ~ 4096 (K2 + 1)
5 

1     s («2
5 ~ 60 «2

4 + 1050 «2
3 - 7530 «2

2 + 23535 K2 - 26610) 
Vn   ~   "16384 (K2 + 1)

5 

Finally the assymptotic expansions of the integrands in (2.165)-(2.168) becomes 

hu(a,y)   -+   -i°!*±le-My, (E.58) 
\ot\     4 

hl2(u,y)   ->   -^le-l^, (E.59) 

h21(a,y)   ->   -iA^c-W, (E.60) 
\a\     4 

h22(a,y)   -»   ^f^e-W». (E.61) 
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E.3    The lower half plane 

The variables used in the integrands of the infinite integrals in equations (3.108)- 

(3.111) can be written as 

hsi(a,y)   =   -l^LHl (y3f^ + y^r8), (E.62 

%(X 
hz2 (a, y)   =   x" (-^^6 + We), (E-63 

%Oi 
ha(a,y)   =   —T-iyfö + yira), (E.64 

h2(a,y)   =   -%-^l -(y^-yln), (E.65 
AB 

where 

y3(a,y)   =   e
nsJ/+ r5e-/l3(n5_n6)+n62/+ r7e-/l(n5-"6)+"62/, (E.66 

y4(a,y)   =   a5e
nsV + a6r5e-h3{ns-n6)+n6y - äEr7e~h^-m)+^y, (E.67; 

A5 = -(r6^ + f^r8), (E.68 

n   =   z55 + z56r5e-h^-n^ + z^r7e-h^ns-^\ (E.69 

r8   =   zes + zeerse-^-^-z^rie-^-^, (E.70 

-^55   =   (3 - K3)(ia)a5 + (/c3 + l)n5, (E.71 

^56   =    (3-/c3)(io;)a6 + (K;3 + l)n6, (E.72 

^65   =   «5^5 + ia, (E.73 

266   =   a6n6 + ia, (E.74 

rs   =   X" (s5^6 + ^s), (E-75 
ZA4 

r7   =   — (s5i6 - s6i5), (E.76 
A4 

A4     =     -(s6^+Sp6), (E.77; 
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s5 = i\3aa5 4- A3 (K3 4- 1) n5K4 - («4 - l) \a\, (E.78) 

s6 = i\3aa6 + A3 (K3 + 1) n§KA - (K\ - l) |a|, (E.79) 

h = 05 [X3«4^5 - |a| («4 + 1)] + ia [K4X3 - («4 - 1)], (E.80) 

*6 = fle [X3^n6 - |a|(/c4 + 1)] + ia [KAX3 ~ («4 - 1)], (E.81) 

A3 - ^ + «4(A3(3-K3)-2) + 1, (E.82) 

A3 = X3^, (E.83) 
K3 - 1 

X3 = ^, (E.84) 
M4 

(E.85) 
1 2za2 - a (ä3 + 1)5373 . 
a     2^ + 73(3-^3) 

„ ^ 1 2iQ2 + lal(At3 + l)(5373 ,• _ 7 o & za\ aj\.a)   = 0 i 7^ ^—'        3 = 'is (h.8b) a     2n;- + 73(3 - «3) 

n5   = ^-73 + V/732 + 4(«2 + zNl73|53)), (E.87) 

= § (-T3 - V-yf + 4(«2 + *l"llT3|*3)) , (E-88) 

= ^(-73 + V/732+4(a2-iH|73|^)), (E.89) 

n8   = - f-73- \Jll + 4,(a2-i\a\\j3\S3)j . 

n6 

n7 

(E.90) 

We start by analyzing the roots of the characteristic equation (3.37) asymptoti- 

cally. Defining new variables 

r = M s = M (E.91) 
M 73 

the first two roots of the characteristic equation (3.37) becomes 

n5   =   i(-73 + ^732 + 4(a2 + zH|73|53))=^iV5) (E.92) 

n6   =   ^-73-^/73
2 + 4(a

2 + zH|73|53))=i|liV6, (E.93) 

V «3 + 1 
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where 

Na -sr + \/r2 + 4 + Aiör, 

jV6   =   -sr - Vr2 + 4 + 4i5r. 

As a —> oo or r —»■ 0 

na   —>■   |CK| , 

riß   —»   — \a\ 

In the expression for y3(a,y) and y4(a, y) the exponential terms becomes 

=,"52/ ->■   e TO 

e-ft3(n5-ri6)+n6j/    _^.    g-|a|(2/i3+3/) _^ Q 

e-/i3(n5-n6)+"62/    _^    g-|a|(2/i3+J/) _;, Q 

since the range of yis — h3 < y < 0. Therefore 

y3(a,y)   ->   e'^, 

2/4(a,y)   ->■   05e|Q|3/. 

Similarly in the expression for r6 and r8 the exponential terns tends to 

e-h3(n5-n6)     _^     g-2|a|/i3 _^ Q 

g-/i3("5-n6)     _^.     e-2|a|/i3 _j. Q 

Thus 

r6   ->•   ^55, 

?"8     -»     ^65, 

and 

(E.95) 

(E.96) 

(E.97) 

(E.98) 

Afi-+ A, 60, 

(E.99) 

(E.100) 

(E.101) 

(E.102) 

(E.103) 

(E.104) 

(E.105) 

(E.106) 

(E.107) 

(E.108) 
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where 

Ao = - (255*65 + 255*65) • (E.109) 

Therefore equations (3.118)-(3.121) becomes 

hi (a, y)   ->   -    l 3
A   j       (^65 + ^65), (E.110) 

hz2(a,y)   ->   ——(-255 + 255), (E.lll) 
&o 
iae^y      _       _ 

h41(a,y)   -> —(05^55 + 05^55), (E.112) 
^0 

,    ,      .              iaUz-l)e^y ,   _ . ,„„„> 
h42{a,y)   -> T (a5265 - a52;65). (E.113) 

Expanding equations (E.110)-(E.113) asymptotically as a -> 00 we obtain 

13 

h»i(a,y)   ->   i^reW^^r", (E.114) 
1    ' n=0 

13 

/i32(a,y)   -►   e^yJ2^nr\ (E.115) 
n=0 

13 

M<*,v)   -►   i^e^V^r", (E.116) 
1     ' 71=0 

13 

M«>v)   -J-   eN^Kr», (E.117) 
n=0 
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where 

S0 

£1 

S2 

S3 

£5 

S 

K3 + 1 

4 
s {K3 + 5) 

8 
5 

8 
s 

4 
1  5K3-8 

32  K3 +1 
1 5 («3 - 3) 

16    % +1 
_     1   5 K\ — 36 K3 + 57 

6   =    128        («3 +1)2 

=   J_ (K, - 3) («, - 7) 5 
64 («3 +1)2 

1   5 /cf - 84 AC§ + 375 /-c3 - 493 
512 (K3 + l)3 

1    (/c3-3)(«j-18«3 + 61)s 
9 256 (K3 +1)3 

1    5 K| - 152 4 + 1318 /c§ - 4324 K3 + 4783 
10   ~    2048 (K3 + 1)4 

1    («3 - 3) (K3 - 7) («§ - 26 K3 + 85) s 
U 1024 („3 +1)4 

_  5 K| - 48 4 + 682 «1 - 4026 4 + 10479 «3 - 9958 
12 ~ 8192 (K3 + 1)

5 

1 (K3 - 3) (4 -524 + 734 «§ - 3748 K3 + 6217) s 
13 ~ 4Ö96 («3 +1)5 
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T       - K3 ~  1 

To   ~ 4~ 
(/C3 + 1) S 

Si     — Ö  

T2     =     "I 
-T _   1 «3-3 
4     16 K3 + 1 

1 s(«3-4) 
^5  = 

64 K3 + 1 

1 («3 -3) («3 -7) 

64   (AC3 + l)2 

1 s («| - 12 K3 + 29) 

256     (AC3 + 1)2 ^     ^ !56    («3 + l)^ 

1 (K3- 3) (4-18K3 + 61) 

;56 r«, + lV 

9     1024 

1  («3 

^8     256      («3 +1) 

1 S(K|-24K§ + 147«3-257) j-q   _   _____ . _  

Fix 

10     1024 

1 

"4096 

1 
12     4096 

(«3 + I)' 

3) (/c3 - 7) (4 - 26 K3 + 85) 

(«3 + I)4 

s («| - 40 4 + 446 «§ - 1844 K3 + 2531) 

(«3 + l)4 

(K3 - 3) (4 -524 + 734 K§ - 3748 KZ + 6217) 

(«3 + I)" 

5 (4 - 60 4 + 1050 «I - 7530 /c§ + 23535 K3 - 26610) 

(«3 + I)5 
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r ^3 + 1 

(K3 + 1)S 

G2   =   8 

Qz   =  0 

_    1 AC3-4 
^4     —     TJX -T 32 K3 +1 

&     =     0 
_     1   «§ - 12 K3 + 29 

^   ~    128      («3 + l)2 

g7   =   0 (E.120) 

1   4 - 24 4 + 147K3-257 

512 (/.3 + I)3 

£9    =    0 
1    K| - 40 4 + 446 «§ - 1844 «3 + 2531 

010   ~    2048 («3 + 1)4 

Ö11   =   0 

1    4 - 60 4 + 1050 K| - 7530 «§ + 23535 /c3 - 26610 
012 ~   8192 (K3 + I)5 

013 =    0 
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Kl — 1 

Hi   = 

4 
(«3 + 1)5 

oj    _ 1  ^3-3 
HA

    - 16^3 + 1 
_ 1  s (K3 - 4) 

5 64    KS + 1 
_ 1  («3 - 3) («3 - 7) 

H6   ~ 64        (K3 + 1)
2 

w? = ^La(^r12?a
+29) (Km) 

H.%   — 

256 («3 + l)' 

1   (K3-3)(K§-18K3 + 61) 

256 (K3 + l)3 

1    5(K|-24K§ + 147K3-257) 
9 1024 (K3 +1)3 

1     (Ac3-3)(tt3-7)(KJ-26tt3 + 85) 
Hl°   ~    1024 («3 + 1)4 

1    s (4 - 40 4 + 446 K§ - 1844 K3 + 2531) 
Hn   ~   4Ö96 («3 + 1)4 

1     («3 - 3) (4 -524 + 734 K\ - 3748 /c3 + 6217) 
Ul2   ~   4Ö96 («3 + 1)5 

1     s (/c| - 60 4 + 1050 K| - 7530 4 + 23535 K3 - 26610) 
Kl3   ~   16384 (K3 + 1)

5 

Finally as a —> oo or r —> 0 the behaviour of the integrands become 

M«.*)   -»   -^^e^, (E.123) 

M°,!/)  -► <-^|^c|a|y. (E-124) 

M«>*)   -+   ^Zie'0'», (E.125) 
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Appendix F 

Numerical Evaluation of Fredholm 

Kernels 

F.l    The Infinite Integral 

In solving equations such as (4.24), the accuracy is very highly dependent on the 

correct evaluation of the Fredholm kernels k*j(s,r)(i = 1,...,4, j = 1,2). The 

Fredholm kernels contain integrals with infinite upper limit. Evaluation of the infinite 

integrals to a high degree of accuracy is essential. 

We shall treat the integrands with sine and cosine terms separately. Integration 

of k*j(s,r) is done by separating the integration limits, i.e. 

4 
kn(s,r)   = 

ki2{s,r)   = 

K+l 

4 
K+ 1 

r rA' />0O" 

/   + / 
Jo JA- J 

r  pA' /■oo' 

/       + / 
../o JA* J 

^(OsinC^-OdC, 

$:2(C)cosC(5-r)dC, 

First integrals in kij(s,r) are bounded and are evaluated numerically. However, the 

second integrals are evaluated using the 13 term approximation in the asymptotic 

expansion. 
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For the 0 to A* part, integration is done by using a Gaussian quadrature.  We 
i    * 113 

can choose A* so that \^\    is small to any degree we want. For a particular nonho- 

mogeneity constant, 73^3, there is a point where any further increase in A* will only 

serve to tax the numerical effort. If A* becomes larger in 0 to A* integral, there will 

be more computing effort to calculate this integral. 

The second integrals consist of 

^(C) sinCC*-r)dC, ^(OcosC(a-r)dC (F.l) 
I A* JA* 

For the A* to infinity part, the integrands $*X(C) and ®h(0 are asymptotically ex- 

panded as shown in Appendix E for £ -> 00 as follows: 

13 

*n(C)    =   E^ 
71=1 

13 

*3i(C) = Ec» 
n=l 

13 

^i(c) = E£» 
71=1 

*4l(0     =    £> 
71=1 

13 

*;2(o = Eß» 
71=1 

13 

*»(o = Ep« 
71=1 

13 

^2(0 = E^ 
71=1 

13 

%(o = E^" 
71=1 

7_ 
c 

ll 
c 

2! 
c 

2! 
c 

2! 
c 

2! 
c 

2! 
c 

2! 
c 

sin£(s — r), 

sinC(s-r), 

sin£(s — r), 

sin£(s — r), 

cosC(s-r), 

cos((s — r), 

cos£(s — r), 

cos£(s — r). 

(F.2) 

(F.3) 

(F.4) 

(F.5) 

(F.6) 

(F.7) 

(F.8) 

(F.9) 

where An, Bn, Cn, Vn, £n, Tn, Qn, and %n are given in equations (E.54)-(E.57) and 
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(E.118)-(E. 121).Thus we need to calculate the integrals of the form 

sin£ \s — r\ 

First note that 

Si(x) — 

Ci{x)   = 

where 

Sk 

ck 

oo 

A* s. 
°° cosC|s - r 

c k       <. 

(F.10) 

(F.ll) 

sin(t) 

o      * 
x cos(t) 

dt = 
OO /"CO sin (2) ,      7T Id 

t 2 x 

sin(t) 

o 

r\A i — C0Sf 
dt = 7o + /o5|x| - / dt, 

t .In c 

dt,(F.12) 

(F.13) 

7o = 0.57721566490. 

Therefore 

J X 

' sin(t) 
t 

cos(t) 

dt 

dt 

* \x\     cv ^ 

x\ cos(t) 
t 

dt 

-7o ~ M^l + / 
./o 

x| 1 - cost 
t 

dt. 

Si and C\ may be obtained as 

7T s —r|   /"    sin£|s — r \s — r 
Si   —     / dC =  

s-r JA. C s-r   12 
- - Si(A* \s - r\) 

Ci 
/•oo 

JA* 

cosC \s — r\ 
d( = -Ci (A* \s - r\ 

(F.14) 

(F.15) 

(F.16) 

(F.17) 

The necessary recursive formulas may therefore be obtained by integrating by parts. 

Sk 
sin A \s — r\      \s 

+ 
oo r\   I ~~ cos£ \s 

A A^ik-l)      jfe-l 
1     {sin A \s — r\     .        . _, 

+ |s-r|Cfc_! 

fc-i ^c 
s — r 
Is — r\ 

k-l\     Ak~l 

s — r 

\s — r\ 
k > 1        (F.18) 
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Ck 
cos Als — r\      \s — r\ 
Ak~l(k-1)      k-1 

sin£ \s — r\ 

c fc-1 
d( 

k-1 
cos A \s — r\ 

- (s-r) 5fc_i k > 1 (F.19) 
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